• 제목/요약/키워드: Transcritical cycle

검색결과 37건 처리시간 0.029초

이산화탄소를 적용한 주거용 냉난방 겸용 열펌프 시스템의 시뮬레이션 (Simulation on a Residential Heat Pump System Using $CO_2$)

  • 조홍현;이무연;김용찬
    • 설비공학논문집
    • /
    • 제15권12호
    • /
    • pp.987-995
    • /
    • 2003
  • The performance of a residential heating and cooling system with $CO_2$ is predicted by using a cycle simulation model. The simulations are conducted by varying design parameters and operating conditions. The efficiency of the transcritical cycle can be improved by utilizing the advantages in heat transfer characteristics of $CO_2$ and developing microchannel indoor and outdoor heat exchangers. For the designed system of this study, the predicted COP of the heat pump system is approximately 3.5 in the heating mode and 3.0 in the cooling mode. The predicted optimal discharge pressure for the heat pump system is approximately 11 MPa in the heating mode and 9 MPa in the cooling mode.

팽창기를 적용한 이산화탄소 냉방시스템의 성능특성에 관한 해석적 연구 (Simulation Study on the Performance Characteristics of a $CO_2$ Cooling System with an Expander)

  • 조홍현;백창현;류창기;김용찬
    • 설비공학논문집
    • /
    • 제19권9호
    • /
    • pp.630-639
    • /
    • 2007
  • A $CO_2$ cycle shows large throttling loss during the expansion process. The application of an expander into the $CO_2$ cycle can reduce the throttling loss and then improve system performance. In this study, the performance of a transcritical $CO_2$ cycle with an expander was analytically investigated in order to improve the cooling performance of the system. The expander was applied to the single-stage and two-stage compression cycles. The performance was analyzed with the variations of compressor frequency, outdoor temperature, and expander efficiency. The single-stage and two-stage compression cycles with the expander showed COP improvement of 25% and 32%, respectively, over the single-stage cycle with an EEV.

열원온도와 작동유체에 따른 초월임계 유기랭킨사이클의 열역학적 성능 특성 (Thermodynamic Performance Characteristics of Transcritical Organic Rankine Cycle Depending on Source Temperature and Working Fluid)

  • 김경훈
    • 대한기계학회논문집B
    • /
    • 제41권11호
    • /
    • pp.699-707
    • /
    • 2017
  • 본 연구에서는 아홉 종류의 작동유체를 고려하여 저온 열원으로 구동되는 아임계 및 초월임계 유기 랭킨 사이클의 열역학적 성능 특성을 비교 해석한다. 터빈입구압력, 열원온도 및 작동유체가 열교환기 내 온도분포와 핀치포인트, 작동유체의 유량, 시스템 출력 및 열효율 등 시스템의 성능에 미치는 영향을 분석한다. 해석 결과는 작동유체의 압력이 아임계 영역에서 초임계 영역으로 높아지면 열교환기에서 열원과 작동유체 사이의 온도 불균일 정도가 감소하면서 시스템 출력이나 열효율 등은 증가하나 시스템의 단위출력당 터빈 크기는 작아짐을 보여준다.

$CO_2$ 시스템에서 내부열교환기 최적설계에 대한 실험적 연구 (Experimental Study on Optimal Design of Internal Heat Exchanger for $CO_2$ System)

  • 김대훈;이상재;최준영;이재헌;권영철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2085-2090
    • /
    • 2007
  • This paper describes the possible way to improve the capacity, the efficiency and the pressure drop of $CO_2$ system. It is considered the use of an internal heat exchanger (IHX) to improve the performance of the $CO_2$ system. Experiment was performed by changing a tube shape, a tube number and a tube length of IHX to investigate the performance of IHX for $CO_2$ system. The focus of the present study is to obtain the concept on IHX optimal design. Experimental results show that design parameters are closely related with the capacity and the pressure drop of $CO_2$ system. In the transcritical $CO_2$ cycle, the system performance is very sensitive to the IHX design. System performance on operation condition and shape of IHX is also introduced.

  • PDF

냉매충전량이 초임계 이산화탄소 사이클의 냉방성능에 미치는 영향에 대한 연구 (Effects of Refrigerant Charge Amount on the Cooling Performance of a Transcritical $CO_{2}$ Cycle)

  • 조홍현;류창기;김용찬;심윤희
    • 설비공학논문집
    • /
    • 제17권5호
    • /
    • pp.410-417
    • /
    • 2005
  • The cooling performance of a transcritical $CO_{2}$ cycle varies significantly with a variation of refrigerant charge amount. In this study, the performance of the $CO_{2}$ system was measured and analyzed by varying refrigerant charge amount at a standard test condition. Besides, the losses of the major components in the $CO_{2}$ system were estimated by evaluating entropy generation with refrigerant charge amount. The losses in the expansion device and the gascooler show the major portion of the total loss. For undercharging conditions, the expansion loss dominates the overall system performance, while the gascooler loss increases significantly with an increase of refrigerant charge amount.

$CO_2$ 초임계 사이클을 위한 일체형 스크롤 팽창기-압축기 성능해석 (Performance Analysis of Scroll Expander-Compressor Unit for $CO_2$ Transcritical Cycles)

  • 김현진;남보영;안종민
    • 설비공학논문집
    • /
    • 제18권5호
    • /
    • pp.434-442
    • /
    • 2006
  • In a two-stage compression $CO_2$ transcritical cycle, application of a scroll expander-compressor unit has been considered in order to improve the cycle COP. For both expander and 1st stage compressor, scroll wrap profile which was originally designed for a R410A air-conditioning cycle mechanism was used with minor modifications: wrap height and involute end angle were adjusted for required displacement volume and built-in volume ratio. For pressure condition of 10 Mpa/3.5 MPa and expander inlet temperature of $35^{\circ}C$, 25% improvement in COP was obtained by using expander-compressor unit. As evaporator pressure increased, COP improvement was lowered mainly due to decreasing compressor peformance.

R744용 초임계 냉동사이클의 성능 분석 (Performance Analysis of R744(Carbon Dioxide) for Transcritical Refrigeration System)

  • 노건상;손창효
    • 한국산학기술학회논문지
    • /
    • 제10권1호
    • /
    • pp.32-38
    • /
    • 2009
  • R744용 초임계 증기압축식 냉동시스템의 작동변수에 대한 기초설계자료를 제공하고자 냉동능력, 압축일량, 성적계수에 대한 사이클 성능분석을 실시하였다. 본 연구에서 고려된 작동변수는 R744 증기압축식 사이클의 과열도, 가스냉각기 출구온도, 증발온도이다. R744의 냉동능력은 과열도가 증가할수록 증가하는 반면, 증발온도와 가스냉각기 출구온도가 증가할수록 감소한다. 압축일량은 R744의 과열도와 냉각압력과 함께 증가하나 증발온도는 증가할수록 감소한다. 그리고 성적계수는 가스냉각기의 출구온도와 증발온도가 증가할수록 증가하는 반면, 과열도는 감소한다. 그러므로, R744용 초임계 증기압축식 냉동시스템의 냉동능력, 압축일량, 성적계수는 과열도, 가스냉각기 출구온도, 증발온도에 영향을 받는 것을 알 수 있었다. 따라서, R744용 초임계 증기압축식 냉동시스템을 설계할 경우에는 이러한 영향을 면밀하게 파악하여야 한다.

운전조건 변화가 $CO_2$ 자동차 에어컨 시스템의 냉방성능에 미치는 영향에 대한 실험적 연구 (Effects of Operating Parameters on Cooling Performance of a Transcritical $CO_2$ Mobile Air-Conditioning System)

  • 이준경
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.67-75
    • /
    • 2007
  • This paper deals with the research for the effects of the operating parameters that could be used for a transcritical $CO_2$ mobile air-conditioning system on the cooling performance. The experimental conditions of the performance tests for a system and components such as a gas cooler and an evaporator were suggested to compare the performance of each with the standardized test conditions. And this research presents experimental results for the performance characteristics of a $CO_2$ mobile air conditioning system with various operating conditions such as different gas cooler inlet pressures and frontal air velocities/temperatures passing through an evaporator and a gas cooler. Experimental results show that the cooling capacity was more than 5kW and coefficient of performance (COP) was more than 2.1, also. Therefore, we checked that the mobile air-conditioning system using $CO_2$ has good performance compared to that using HFC-134a.

유기랭킨사이클의 성능에 미치는 내부열교환기의 영향 (Effects of Internal Heat Exchanger on Performance of Organic Rankine Cycles)

  • 김경훈;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제22권3호
    • /
    • pp.402-408
    • /
    • 2011
  • Organic Rankine cycles (ORC) can be used to produce power from heat at different temperature levels available as geothermal heat, as biogenic heat from biomass, as solar or as waste heat. In ORC working fluids with relatively low critical temperatures and pressures can be compressed directly to their supercritical pressures and heated before expansion so as to obtain a better thermal match with their heat sources. In this work thermal performance of ORC with and without an internal heat exchanger is comparatively investigated in the range of subcritical and transcritical cycles. R134a is considered as working fluid and special attention is paid to the effect of turbine inlet pressure on the characteristics of the system. Results show that operation with supercritical cycles can provide better performance than subcritical cycles and the internal heat exchanger can improve the thermal efficiency when the temperature of heat source becomes higher.

연료전지 자동차용 전자 제어식 $CO_2$ 냉방 시스템의 성능 특성에 관한 연구 (Studies on the Performance Characteristics of an Electronically Controlled $CO_2$ Air Conditioning System for Fuel Cell Electric Vehicles)

  • 김성철;이동혁;이호성;원종필;이대웅;이원석
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.150-157
    • /
    • 2008
  • The main objective of this paper is to investigate the performance characteristics of a $CO_2$ air conditioning system for fuel cell electric vehicles (FCEV). The present air conditioning system for FCEV uses the electrically driven compressor and electrically controlled expansion valve for $CO_2$ as a working fluid. The experimental work has been done with various operating conditions, which are quite matching the actual vehicle's driving conditions such as different compressor speed and high pressure to identify the characteristics of the system. Experimental results show that the cooling capacity and coefficient of performance (COP) were up to 6.3kW and 2.5, respectively. This paper also deals with the development of optimum high pressure control algorithm for the transcritical $CO_2$ cycle to achieve the maximum COP.