• Title/Summary/Keyword: Transcription inhibition

Search Result 574, Processing Time 0.033 seconds

Reduction of muscle cyclooxygenase-2 with transcutaneous electrical nerve stimulation and cold therapy in rats of carrageenan-induced inflammatory muscle pain (Carrageenan으로 유도된 염증성 근통증 흰쥐 모델에서 경피신경전기자극과 냉치료에 의한 비복근의 cyclooxygenase-2의 감소)

  • Paek, Yun-Woong;Chae, Yun-Won
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.1
    • /
    • pp.89-94
    • /
    • 2002
  • Prostaglandins are generated through two isoforms of the enzyme cyclooxygenase, constitutively expressed cyclooxygenase(COX)-1 and COX-2, which is induced at sites of inflammation. Inhibition of COX-2 is desirable as this may avoid side effects seen with NSAIDs. We examined the effects of transcutaneous electrical nerve stimulation and cold therapy on the levels of muscle cycloooxygenase-2 mRNA in rats of carrageenan-induced inflammatory. The method of behavioral assessment were paw withdrawal latency(PWL) and tail flick test(TFT). The COX-2 mRNA levels were quantified by reverse transcription-polymerase chain reaction (RT-PCR). Following the transcutaneous electrical nerve stimulation and cold therapy, PWL and TFT were increased and COX-2 mRNA expression in gastrocnemius muscles were decreased. These results suggest that a transcutaneous electrical nerve stimulation and cold therapy were good therapy for a muscle pain.

  • PDF

A Brief Introduction to the Transduction of Neural Activity into Fos Signal

  • Chung, Leeyup
    • Development and Reproduction
    • /
    • v.19 no.2
    • /
    • pp.61-67
    • /
    • 2015
  • The immediate early gene c-fos has long been known as a molecular marker of neural activity. The neuron's activity is transformed into intracellular calcium influx through NMDA receptors and L-type voltage sensitive calcium channels. For the transcription of c-fos, neural activity should be strong enough to activate mitogen-activated protein kinase (MAPK) signaling pathway which shows low calcium sensitivity. Upon translation, the auto-inhibition by Fos protein regulates basal Fos expression. The pattern of external stimuli and the valence of the stimulus to the animal change Fos signal, thus the signal reflects learning and memory aspects. Understanding the features of multiple components regulating Fos signaling is necessary for the optimal generation and interpretation of Fos signal.

Sulforaphane Inhibits Osteoclastogenesis by Inhibiting Nuclear Factor-κB

  • Kim, Soo-Jin;Kang, So-Young;Shin, Hyun-Hee;Choi, Hye-Seon
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.364-370
    • /
    • 2005
  • We show that sulforaphane inhibits osteoclastogenesis in the presence of macrophage colony-stimulating factor (M-CSF) and receptor for activation of nuclear factor-${\kappa}B$ ligand (RANKL) in osteoclast (OC) precursors. Sulforaphane, an aliphatic isothiocyanate, is a known cancer chemo-preventative agent with anti-oxidative properties. Nuclear factor-${\kappa}B$ (NF-${\kappa}B$) is a critical transcription factor in RANKL-induced osteoclastogenesis, and electrophoretic mobility shift assays (EMSAs) and assay of NF-${\kappa}B$-mediated secreted alkaline phosphatase (SEAP) revealed that sulforaphane selectively inhibited NF-${\kappa}B$ activation induced by RANKL. Inhibition may involve interaction of sulforaphane with thiol groups, since it was prevented by reducing agents.

Mild Hyperthermia-induced Cell Cycle Arrest under P53-dependent Pathway in Human Cells

  • Jung, Hwa-Jin;Yim, Sung-Vin;Park, Seungjoon;Jung, Joo-Ho;Jung, Jee-Chang;Seo, Young-Rok
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.114-114
    • /
    • 2003
  • p53 has identified as a tumor suppressor protein to protect cells from DNA damage. p53, also well known for a transcription factor, can activate genes such as p21, bax, gadd45 and induce a number of the responses such as differentiation, senescence, DNA repair, apoptosis and the inhibition of angiogenesis to protect cells. Many mechanisms of p53 activation have been studied.(omitted)

  • PDF

Induction of cell cycle arrest and apoptosis by an indirubin analog, a CDK inhibitor, in human lung cancer cells

  • Lee, Jong-Won;Moon, Myung-Ju;Kim, Yong-Chul;Lee, Sang-Kook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.91.2-91.2
    • /
    • 2003
  • Cyclin-dependent kinases (CDKs) regulate the cell division cycle, apoptosis, transcription and differentiation. Inhibition of CDK is a promising target in development of anti-cancer agents. An indirubin analog (AGM01l), a CDK inhibitor, is a synthetic compound that inhibits human cancer cell growth in vitro. AGM01l showed a potent cytotoxicity in cultured human cancer cell lines (IC$\sub$50/ = 5.43 ${\mu}$M for A549, human colon cancer cell; IC$\sub$50/ = 1.21 ${\mu}$M for SNU-638, human stomach cancer cell; IC$\sub$50/ 9.23 ${\mu}$M for HL-60, human leukemia cell). (omitted)

  • PDF

Synthesis of New 3-Arylisoquinolinamines: Effect on Topoisomerase I Inhibition and Cytotoxicity

  • Cho, Won-Jae;Min, Sun-Young;Le, Thanh-Nguyen;Kim, Tae-Sung
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.180.1-180.1
    • /
    • 2003
  • Eukaryotic DNA topoisomerase I (top I) is an essential enzyme that act to relax supercoiled DNA during the transcription, replication and mitosis. Intracellular levels of top I are elevated in a number of human solid tumors, relative to the respective normal tissues, suggesting that controlling the topI level is important to treat cancer. Top I poisons show their antitumor activities by stabilizing the cleavable ternary complex consisting of top I enzyme, DNA, and drug. Thus, top I is a promising target for the development of new cancer chemotherapeutics against a number of solid tumors. (omitted)

  • PDF

Anti-migration and anti-invasion effects of LY-290181 on breast cancer cell lines through the inhibition of Twist1

  • Jiyoung Park;Sewoong Lee;Haelim Yoon;Eunjeong Kang;Sayeon Cho
    • BMB Reports
    • /
    • v.56 no.7
    • /
    • pp.410-415
    • /
    • 2023
  • Breast cancer has become the most common cancer among women worldwide. Among breast cancers, metastatic breast cancer is associated with the highest mortality rate. Twist1, one of the epithelial-mesenchymal transition-regulating transcription factors, is known to promote the intravasation of breast cancer cells into metastatic sites. Therefore, targeting Twist1 to develop anti-cancer drugs might be a valuable strategy. In this study, LY-290181 dose-dependently inhibited migration, invasion, and multicellular tumor spheroid invasion in breast cancer cell lines. These anti-cancer effects of LY-290181 were mediated through the down-regulation of Twist1 protein levels. LY-290181 inhibited extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways. Therefore, our findings suggest that LY-290181 may serve as a basis for future research and development of an anti-cancer agent targeting metastatic cancers.

Effects of Retinoic Acid and cAMP on the Differentiation of Naegleria gruberi Amoebas into Flagellates

  • Bora Kim;Hong Kyoung Kim;Daemyoung Kim;In Kwon Chung;Young Min Kim;Jin Won Cho;JooHun Lee
    • Animal cells and systems
    • /
    • v.3 no.2
    • /
    • pp.207-213
    • /
    • 1999
  • During the differentiation of Naegleria gruberi amoebas into flagellates, the amoebas undergo sequential changes in cell shape and form new cellular organelles. To understand the nature of the signal which initiates this differentiation and the signal transduction pathway, we treated cells with four agents, PMA, retinoic acid (RA), okadaic acid, and cAMP. Retinoic acid and cAMP had specific effects on the differentiation of N. gruberi depending on the time of the drug treatment. Addition of (100$\mu$M) retinoic acid at the initiation of differentiation inhibited differentiation by blockinq the transcription of differentiation specific genes (e.g., $\beta$-tubulin). This inhibition of differentiation by retinoic acid was overcome by co-treatment with cAMP (or dbcAMP, 20 $\mu$M). Addition of retinoic acid at later stages (30 and 70 min) had no effect on the transcriptional regulation of the $\beta$-tubulin gene, however the differentiation was inhibited by different degrees. Co-treatment of cAMP at these stages did not overcome the inhibitory effect of retinoic acid. These results suggest that the role of retinoic acid as a transcriptional regulator might be conserved throughout the evolution of eukaryotes.

  • PDF

The Effects of Hyunggaeyungyo-tang of Suppression of iNOS Production on Mice with Allergic Rhinitis (알레르기 비염 유발 생쥐에 대한 형개연교탕(荊芥連翹湯)의 iNOS 생성 억제 효과)

  • Park, Jung-Hoon;Hong, Seung-Ug
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.25 no.1
    • /
    • pp.12-21
    • /
    • 2012
  • Background and Objectives : Allergic rhinitis is one of the most common diseases in the otorhinolaryngology area. in oriental clinic, Hyunggaeyungyo-tang(HYT) has been used as a primary prescription to treat allergic rhinitis. However, there have been no studies so far performed on the effect of this HYT use. The purpose of this study was find out therapeutic effects of its exclusive use on the rat with allergic rhinitis. Material and Methods : Thirty BALB/c mice were divided into three group : normal group(NOR), control group(CON) inoculated with allergic rhinitis and sample group(SAM) treated with the HYT extract after it was treated the same as the control group. Rats were sensitized intraperitoneally with ovalbumin solution 4times at intervals of 2 days. After that time, rats in SAM were administered by HYT to treat the inflammation. Results : 1. The number of eosinophil in SAM noticeably decreased than CON and this decrease had probability. The inhibition of eosinophil distribution. The infiltration of eosinophil in SAM noticeably decreased than CON. 2. The damaged mucosa as disruption of cilia in respiratory cell, vacant mucose secreting cell and infiltration of inflammation intricate cells in CON were increased than NOR, but SAM same as normal configuration. Decrease of icthing and sneezing intricate neurotransmitter (substance P). Decrease of angiogenesis intricate cytokine(MIP-2). 3. Transcription factor(NF-${\kappa}B$ p65) was decreased. 4. Transcription factor inhibitor(p-$I{\kappa}B$) was decreased. 5. Inflammation cytokine(iNOS) was decreased. Conclusion : The results suggest that HYT is significantly effective in the treatment of inflammation caused by allergic rhinitis through the suppression of NF-${\kappa}B$ activation and iNOS production.

Inhibitory Effects of Ginsenoside Rb1,Rg3, and Panax ginseng Head Butanol Fraction on Inflammatory Mediators from LPS-Stimulated RAW 264.7 Cells

  • Lee, Je-Hyuk;Jeong, Choon-Sik
    • Biomolecules & Therapeutics
    • /
    • v.16 no.3
    • /
    • pp.277-285
    • /
    • 2008
  • Panax ginseng C.A. Mayer (Araliaceae, P. ginseng) has been used for the enhancement of vascular and immune functions in Korea and Japan for a long time. Ginsenoside $Rb_1$ and $Rg_3$ isolated from P. ginseng head-part butanolic extract (PGHB) were investigated for anti-inflammatory activity. Ginsenosides and PGHB did not affect the cell viability within $0\;-\;100\;{\mu}g/ml$ concentration to RAW 264.7 murine macrophage cells. Ginsenosides and PGHB inhibited partly lipopolysaccharide (LPS)-induced nitrite production in a dose-dependent manner. The ginsenosides and PGHB showed partially chemical nitric oxide (NO) quenching (maximum 40%) in the cell-free system. Also, ginsenoside $Rb_1$ and $Rg_3$ inhibited markedly approximately 74 and 54% of inducible nitric oxide synthase (iNOS) mRNA transcription from LPS-induced RAW 264.7 cells. Taken together, the inhibitory effect of ginsenosides and PGHB on NO production did not occur as a result of cell viability, but was caused by both the chemical NO quenching and the regulation of iNOS. Additionally, the ginsenoside $Rb_1$ and PGHB inhibited prostaglandin $E_2$ ($PGE_2$) synthesis in a concentration-dependent manner, showed approximately 70-98% inhibition at $100\;{\mu}g/ml$ concentration. And the treatment with ginsenosides and PGHB attenuated partially LPS-upregulated cyclooxygenase-2 (COX-2) gene transcription. Ginsenoside $Rg_3$ suppressed LPS-stimulated interleukin-6 (IL-6) level to the basal in RAW 264.7 cells. From these results, ginsenoside $Rb_1,\;Rg_3$, and PGHB may be useful for the relief and retardation of immunological inflammatory responses and its action may occur through the reduction of inflammatory mediators, including NO, $PGE_2$, and IL-6 production.