• Title/Summary/Keyword: Transcranial

Search Result 377, Processing Time 0.028 seconds

Frontal Sinus Mucocele with Massive Skull Destruction

  • Choi, Hwan-Young;Lee, Hyung-Jin;Yang, Ji-Ho;Lee, Il-Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.4
    • /
    • pp.285-288
    • /
    • 2006
  • A 63-year-old female complained of left frontal headache and swelling for several months. Physical examination revealed left supraorbital soft, nontender, nonpulsatile mass without bruit. The left eye was displaced downward with respect to the normal right globe. Based on the clinical and radiological findings, the patient was diagnosed as a mucocele arising from the left frontal sinus. The patient underwent a transcranial approach through coronal incision. In this patient, large portions of the anterior and posterior frontal sinus walls were destroyed in association with epidural spread, so we performed cranialization of the frontal sinus and removed the mucosal wall with the aid of a microscope. With a brief review we present a patient with mucocele of the frontal sinus extending into the intracranial and intraorbital region, which was successfully treated by a transcranial approach.

Effects of Transcranial Magnetic Stimulation on Cognitive Function (경두개 자기 자극이 인지 기능에 미치는 영향)

  • Lee, Sang Min;Chae, Jeong-Ho
    • Korean Journal of Biological Psychiatry
    • /
    • v.23 no.3
    • /
    • pp.89-101
    • /
    • 2016
  • Transcranial magnetic stimulation (TMS) is a safe, noninvasive and useful technique for exploring brain function. Especially, for the study of cognition, the technique can modulate a cognitive performance if the targeted area is engaged, because TMS has an effect on cortical network. The effect of TMS can vary depending on the frequency, intensity, and timing of stimulation. In this paper, we review the studies with TMS targeting various regions for evaluation of cognitive function. Cognitive functions, such as attention, working memory, semantic decision, discrimination and social cognition can be improved or deteriorated according to TMS stimulation protocols. Furthermore, potential therapeutic applications of TMS, including therapy in a variety of illness and research into cortical localization, are discussed.

Perspective for Clinical Application and Research of Transcranial Direct Current Stimulation in Physical Therapy

  • Kim, Chung-Sun;Nam, Seok-Hyun
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.6
    • /
    • pp.91-98
    • /
    • 2010
  • Neurostimulation approaches have been developed and explored to modulate neuroplastic changes of cortical function in human brain. As one of the most primary noninvasive tools, transcranial direct current stimulation (tDCS) was extensively studied in the field of neuroscience. The alternation of cortical neurons depending on the polarity of the tDCS has been used for improving cognitive processing including working memory, learning, and language in normal individuals, as well as in patients with neurological or psychiatric diseases. In addition, tDCS has great advantages: it is a non-invasive, painless, safe, and cost-effective approach to enhance brain function in normal subjects and patients with neurological disorders. Numerous previous studies have confirmed the efficacy of tDCS. However, tDCS has not been considered for clinical applications and research in the field of physical therapy. Therefore, this review will focus on the general principles of tDCS and its related application parameters, and provide consideration of motor behavioral research and clinical applications in physical therapy.

Repetitive Transcranial Magnetic Stimulation to Treat Depression and Insomnia with Chronic Low Back Pain

  • Park, Eun Jung;Lee, Se Jin;Koh, Do Yle;Han, Yoo Mi
    • The Korean Journal of Pain
    • /
    • v.27 no.3
    • /
    • pp.285-289
    • /
    • 2014
  • Transcranial magnetic stimulation (TMS) is a noninvasive and safe technique for motor cortex stimulation. TMS is used to treat neurological and psychiatric disorders, including mood and movement disorders. TMS can also treat several types of chronic neuropathic pain. The pain relief mechanism of cortical stimulation is caused by modifications in neuronal excitability. Depression is a common co-morbidity with chronic pain. Pain and depression should be treated concurrently to achieve a positive outcome. Insomnia also frequently occurs with chronic lower back pain. Several studies have proposed hypotheses for TMS pain management. Herein, we report two cases with positive results for the treatment of depression and insomnia with chronic low back pain by TMS.

Transcranial Doppler: examination techniques and interpretation

  • Do, Youngrok;Kim, Yong-Jae;Lee, Jun Hong
    • Annals of Clinical Neurophysiology
    • /
    • v.21 no.2
    • /
    • pp.71-78
    • /
    • 2019
  • Transcranial Doppler (TCD) was introduced in 1982 to assess intracranial arteries noninvasively, since when it has been widely used to assess and monitor cerebrovascular hemodynamics. The clinical applications of TCD are broadening to include other fields that require monitoring of the cerebral blood flow. TCD has fewer temporal and spatial restrictions than other methods, can be performed on less-compliant patients, and causes no harm to the body. However, its reliance on high levels of examiner skill and experience, as well as a lack of standardized scanning protocols are obstacles that still need to be overcome. In this report we review TCD examination techniques and interpret their findings for several conditions.

Neuromodulation for Insomnia Management (불면증 치료법으로서의 뉴로모듈레이션)

  • Yoon, Ho-Kyoung
    • Sleep Medicine and Psychophysiology
    • /
    • v.28 no.1
    • /
    • pp.2-5
    • /
    • 2021
  • Hyperarousal or increased brain excitability is thought to play a key role in the pathophysiology of insomnia. Neuromodulation techniques are emergent complementary therapies for insomnia and can improve sleep by modulating cortical excitability. A growing body of literature support the idea that neuromodulation can be effective in improving sleep or treating insomnia. Recent evidence has revealed that neuromodulation methods can improve objective and subjective sleep measures in individuals with insomnia, although effects vary according to protocol. Different mechanisms of action might explain the relative efficacy of neuromodulation techniques on sleep outcomes. Further research testing different stimulation parameters, replicating existing protocols, and adding standardized sleep-related outcomes could provide further evidence on the clinical utility of neuromodulation techniques.

Case Analysis of Persistent Vasospasm after Cerebral Artery Aneurysm Rupture by Using Transcranial Color Coded Doppler Ultrasonography (경두개 색조 도플러 초음파검사를 이용한 대뇌동맥 파열 이후 지속적인 혈관 연축 증례 분석)

  • Ji, Myeong-Hoon;Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.44 no.1
    • /
    • pp.15-23
    • /
    • 2021
  • In this case analysis, a patient was diagnosed with subarachnoid hemorrhage (SAH) in a 49-year-old female and showed persistent vasospasm after coil emboilzation in an aneurysm. The patient suffered from persistent vasospasm and performed angioplasty a total of 6 times. Transcranial color coded doppler (TCCD) was performed 12 times to monitor vasospasm. As a result, repetitive cerebral blood flow tests were low cost and safely performed without exposure to invasive radiation through the TCCD, and the repeatability and reproducibility of the test were confirmed with the capabilities of a trained professional radiological technologist.

Repetitive transcranial magnetic stimulation for neuropathic pain

  • Kim, Sooyoung;Lee, Eun Kyoung;Sohn, Eunhee
    • Annals of Clinical Neurophysiology
    • /
    • v.24 no.2
    • /
    • pp.53-58
    • /
    • 2022
  • Noninvasive stimulation of the nervous system for treating chronic neuropathic pain has received attention because of its tolerability and relative efficacy. Repetitive transcranial magnetic stimulation (rTMS) is a representative method of noninvasive brain stimulation. Evidence-based guidelines on therapeutic use of rTMS have been proposed recently for several neurological diseases. These guidelines recommend treating neuropathic pain by applying high-frequency (≥ 5 Hz) rTMS to the primary motor cortex contralateral to the painful side. This review summarizes the mechanisms and guidelines of rTMS for treating neuropathic pain, and proposes directions for future research.

Factors Affecting Basilar Artery Pulsatility Index on Transcranial Doppler (뇌혈류 초음파 검사에서 기저동맥 박동지수에 영향을 미치는 인자)

  • Jeong, Ho Tae;Kim, Dae Sik;Kang, Kun Woo;Nam, Yun Teak;Oh, Ji Eun;Cho, Eun Kyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.477-483
    • /
    • 2018
  • Transcranial doppler is a non-invasive method that measures the blood flow velocity and the direction of cerebral blood vessels through the doppler principle. The pulsatility index is an index for measuring the transcranial doppler that reflects the distal vascular resistance and is used as an index for the presence and diffusion of cerebral small vessel diseases. The purpose of this study was to evaluate the risk factors affecting the basilar artery pulsatility index in ischemic stroke patients. From January 2014 to May 2015, 422 patients were selected by measuring the transcranial doppler pulsatility index, considering their basilar artery pulsatility index. Univariate analysis was performed using the basilar artery pulsatility index as a dependent variable. Multiple regression analysis was performed considering the factors affecting the pulsatility index as variables. Univariate analysis revealed age, presence of hypertension, presence of diabetes mellitus, presence of hyperlipidemia, and hematocrit (P<0.1) as factors. Multiple regression analysis showed statistically significant results with age (P<0.001), presence of diabetes (P=0.004), and presence of hyperlipidemia (P=0.041). The risk factors affecting the basilar artery pulsatility index of transcranial doppler were age, diabetes, and hyperlipidemia. Further research will be needed to increase the cerebral pulsatility index as a surrogate marker of the elderly, diabetes, and hyperlipidemia.

Effects of Transcranial Direct Current Stimulation on Lower Extremity Function of Stroke Patients : A meta-analysis of domastic research (뇌졸중 환자의 다리 기능에 대한 경두개직류자극의 효과: 국내 연구의 메타분석)

  • Lee, Jeong-Woo;Lim, Ji-Sun
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.3
    • /
    • pp.87-97
    • /
    • 2021
  • Purpose : The purpose of this meta-analysis was to evaluate the effects of transcranial direct current stimulation on the lower extremity function of stroke patients. Methods : Domestic data were gathered from studies that conducted clinical trials associated with transcranial direct current stimulation and its impact on lower extremity function of stroke patients. A total of 592 studies published between 2012 and 2020 were identified, with 7 studies satisfying the inclusion data. The studies consisted of patient, intervention, comparison, and outcome (PICO) data. The search outcomes were items associated with muscle activity, balance, muscle strength and walking ability. Cochrane risk of bias (ROB) was used to evaluate the quality of 3 randomized control trials. The quality of 4 non-randomized control trials was evaluated using risk of bias assessment tool for non-randomized studies (RoBANS). Effect sizes in this study were computed as the corrected standard mean difference (SMD). A random-effect model was used to analyze the effect size because of the high heterogeneity among the studies. Egger's regression and 'trim-and-fill' tests were carried out to analyze the publishing bias. Results : The following factors had a large total effect size (Hedges's g=2.10, 95 %CI=1.54~2.66) involving transcranial direct current stimulation on stroke patients: muscle activity (Hedges's g=2.38, 95 %CI=1.08~3.68), balance (Hedges's g4=2.41, 95 %CI=1.33~3.60), walking ability (Hedges's g=1.54, 95 %CI=0.49~2.59), and muscle strength (Hedges's g=2.45, 95 % CI: 0.85~4.05). Egger's regression test showed that the publishing bias had statistically significant differences but 'trim-and-fill' test showed that there was still statistical difference. Conclusion : This study provides evidence for the effectiveness of transcranial direct current stimulation on the lower extremity in terms of muscle activity, balance, walking ability, and muscle strength in stroke patients. However, due to the low quality of studies and high heterogeneity factors, the results of our study should be interpreted cautiously.