• Title/Summary/Keyword: Trajectory-based

Search Result 1,514, Processing Time 0.029 seconds

Design of Shaking Beam for Piezoelectric Linear Ultrasonic Motor

  • Yoon, Seok-Jin;Park, Ji-Won;Kim, Sang-Jong;Yu, Yeon-Tae;Kim, Hyun-Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1062-1066
    • /
    • 2003
  • Design of a piezoelectric actuator for the ultrasonic motor must ensure that contact point has elliptic trajectory of movement. The new idea of an elliptic trajectory formation of the piezoelectric actuator is investigated in the paper. Shaking beam for the piezoelectric linear ultrasonic motor was introduced to realize this new idea. The principle is based on the excitation of longitudinal and flexural vibrations of the actuator by using two sources of longitudinal mechanical vibrations shifted by $\pi$/2. Mode-frequency and harmonic response analyses of the actuator based on FEM have been carried out. The moving trajectory of the contact point has been defined. Finally, The experimental research of shaking beam has been confirmed an opportunity of the elliptic trajectory reception with the help of one stable mode of the vibrations.

The Study on the Control of Robot Manipulator by Modification of Reference Trajectory (기준 경로의 변형에 의한 로붓 매니플레이터 제어에 관한 연구)

  • Min, Kyoung-Won;Lee, Jong-Soo;Choi, Gyung-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1205-1207
    • /
    • 1996
  • The computed-torque method (CTM) shows good trajectory tracking performance in controlling robot manipulator if there is no disturbance or modelling errors. But with the increase of a payload or the disturbance of a manipulator, the tracking errors become large. So there have been many researchs to reduce the tracking error. In this paper, we propose a new control algorithm based on the CTM that decreases a tracking error by generating new reference trajectory to the controller. In this algorithm we used a fuzzy system based on the rule bases. For the numerical simulation, we used a 2-link robot manipulator. To simulate the disturbance due to a modelling uncertainty, we added errors to each elements of the inertia matrix and the nonlinear terms and assumed a payload to the end-effector. In the simulations of several cases, our method showed better trajectory tracking performance compared with the CTM.

  • PDF

Learning Optimal Trajectory Generation for Low-Cost Redundant Manipulator using Deep Deterministic Policy Gradient(DDPG) (저가 Redundant Manipulator의 최적 경로 생성을 위한 Deep Deterministic Policy Gradient(DDPG) 학습)

  • Lee, Seunghyeon;Jin, Seongho;Hwang, Seonghyeon;Lee, Inho
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.58-67
    • /
    • 2022
  • In this paper, we propose an approach resolving inaccuracy of the low-cost redundant manipulator workspace with low encoder and low stiffness. When the manipulators are manufactured with low-cost encoders and low-cost links, the robots can run into workspace inaccuracy issues. Furthermore, trajectory generation based on conventional forward/inverse kinematics without taking into account inaccuracy issues will introduce the risk of end-effector fluctuations. Hence, we propose an optimization for the trajectory generation method based on the DDPG (Deep Deterministic Policy Gradient) algorithm for the low-cost redundant manipulators reaching the target position in Euclidean space. We designed the DDPG algorithm minimizing the distance along with the jacobian condition number. The training environment is selected with an error rate of randomly generated joint spaces in a simulator that implemented real-world physics, the test environment is a real robotic experiment and demonstrated our approach.

A Combined CPG and GA Based Adaptive Humanoid Walking for Rolling Terrains (굴곡진 지형에 대한 CPG 및 GA 결합 기반 적응적인 휴머노이드 보행 기법)

  • Kyeong, Deokhwan;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.663-668
    • /
    • 2018
  • A combined CPG (Central Pattern Generator) based foot trajectory and GA (Genetic Algorithm) based joint compensation method is presented for adaptive humanoid walking. In order to increase an adaptability of humanoid walking for rough terrains, the experiment for rolling terrains are introduced. The CPG based foot trajectory method has been successfully applied to basic slops and variable slops, but has a limitation for the rolling terrains. The experiments are conducted in an ODE based Webots simulation environment using humanoid robot Nao to verify a stability of walking for various rolling terrains. The proposed method is compared to the previous CPG foot trajectory technique and shows better performance especially for the cascade rolling terrains.

On-line Motion Synthesis Using Analytically Differentiable System Dynamics (분석적으로 미분 가능한 시스템 동역학을 이용한 온라인 동작 합성 기법)

  • Han, Daseong;Noh, Junyong;Shin, Joseph S.
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.133-142
    • /
    • 2019
  • In physics-based character animation, trajectory optimization has been widely adopted for automatic motion synthesis, through the prediction of an optimal sequence of future states of the character based on its system dynamics model. In general, the system dynamics model is neither in a closed form nor differentiable when it handles the contact dynamics between a character and the environment with rigid body collisions. Employing smoothed contact dynamics, researchers have suggested efficient trajectory optimization techniques based on numerical differentiation of the resulting system dynamics. However, the numerical derivative of the system dynamics model could be inaccurate unlike its analytical counterpart, which may affect the stability of trajectory optimization. In this paper, we propose a novel method to derive the closed-form derivative for the system dynamics by properly approximating the contact model. Based on the resulting derivatives of the system dynamics model, we also present a model predictive control (MPC)-based motion synthesis framework to robustly control the motion of a biped character according to on-line user input without any example motion data.

Design of Trajectory Data Indexing and Query Processing for Real-Time LBS in MapReduce Environments (MapReduce 환경에서의 실시간 LBS를 위한 이동궤적 데이터 색인 및 검색 시스템 설계)

  • Chung, Jaehwa
    • Journal of Digital Contents Society
    • /
    • v.14 no.3
    • /
    • pp.313-321
    • /
    • 2013
  • In recent, proliferation of mobile smart devices have led to big-data era, the importance of location-based services is increasing due to the exponential growth of trajectory related data. In order to process trajectory data, parallel processing platforms such as cloud computing and MapReduce are necessary. Currently, the researches based on MapReduce are on progress, but due to the MapReduce's properties in using batch processing and simple key-value structure, applying MapReduce framework for real time LBS is difficult. Therefore, in this research we propose a suitable system design on efficient indexing and search techniques for real time service based on detailed analysis on the properties of MapReduce.

Development of a Real Trajectory-based Simulator to Verify the Reliability of the Integrated Navigation System for Trains (열차용 복합 항법 시스템 신뢰성 검증을 위한 실 궤적 기반 시뮬레이터 개발)

  • Chae, Myeong-Seok;Cho, Seong-Yun;Shin, Kyung-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.135-144
    • /
    • 2021
  • In railway systems, it is common to obtain train location information through an infrastructure-based train detection system. However, this system has a problem that may provide incorrect location information due to non-detection and erroneous detection, which may cause an accident. Therefore, in this study, we propose a method of providing train location information using a sensor-based integrated navigation system. In order to provide accurate information; however, the reliability of the integrated navigation system must be verified. Therefore, in this paper, we develop a simulator that can generate a reference trajectory and sensor data based on the real trajectory and analyze the performance of the integrated navigation system according to various scenarios on the real trajectory.

Reference ZMP Trajectory Generation and Implementation for a Biped Robot via Linear Inverted Dumbbell Model (LIDM) (선형 역덤벨 모델을 이용한 이족 보행 로봇의 기준 ZMP 궤적 생성 및 보행 구현)

  • Lee, Sang-Yong;Kim, Hwa-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.417-425
    • /
    • 2012
  • This paper presents reference ZMP trajectory generation and implementation for a biped robot via linear inverted dumbbell model (LIDM), which can consider the effect of external momentum on the center of mass (COM) of robot. Based on a reference ZMP trajectory derived by using LIDM, a base trajectory is proposed not only to make the locomotion of robot similar to that of human but also to facilitate its implementation and tuning. In order to realize a dynamic walking using the proposed trajectory, compliance, impedance and ZMP tracking controllers are adopted together. Extensive experiments show that the proposed locomotion of a biped robot is stable and also, similar to that of human. Further researches on balance recovery of a biped robot will be carried out to guarantee its robust locomotion in combination with the proposed trajectory.

Implementation of Ship Trajectory Following Algorithm

  • Wonjin Choi;Seung-Hwan Jun
    • Journal of Navigation and Port Research
    • /
    • v.47 no.2
    • /
    • pp.49-56
    • /
    • 2023
  • As interest in autonomous ships continues to grow, researchers around the world are dedicating themselves to the development of relevant technologies. However, these technologies are not yet perfect. Several technical problems remain unresolved. To address these problems, this study presents the implementation of a ship trajectory algorithm for group navigation, where followers can navigate by following the trajectory of a leader. The algorithm works by storing the leader's trajectory as a follow-point and by calculating the azimuth using the line-of-sight guidance law to reach it. A course-keeping controller based on PD control is implemented to follow the target course and a speed control algorithm is designed to prevent collisions. Sea experiments were conducted using 1 m class small RC model boats to verify the proposed algorithm. The follower successfully navigated by following the leader's trajectory and maintained the designated distance to the forward boat. This study is significant in that it implements an algorithm for the follower to follow the trajectory of the leader rather than directly following it as in conventional methods, and verifies it through sea experiments.

Aircraft 4D Trajectory Model for Air Traffic Control Simulator (항공교통관제 시뮬레이션을 위한 항공기 4D 궤적모델 개발)

  • Jung, Hyuntae;Lee, Keumjin
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.264-271
    • /
    • 2017
  • This paper presents air traffic control simulation model for generating 4D trajectory, and aircraft dynamic model based on 4D trajectory information. With aircraft parameters from BADA and Total Energy Model, the trajectory is defined through modified Bezier curve and the simulation supports two aircraft control methods based on controlled time of arrival (CTA) or airspeed. The simulation results shown that flight time and path were almost identical to the defined trajectory, and derived the differences of each control methods according to wind conditions. Based on the simulation model developed in this study, it is expected to be applied to various air traffic management researches. Future studies will focus on applying optimization techniques in order to minimize the difference between generated trajectories and actual flight routes. This work will increase utilization of developed simulation futhermore.