• Title/Summary/Keyword: Trajectory planning

Search Result 318, Processing Time 0.029 seconds

A Simplified Horizontal Maneuvering Model of a RIB-Type Target Ship (RIB형 표적정의 수평면 조종운동 간략모델)

  • Yoon, Hyeon-Kyu;Yeo, Dong-Jin;Fang, Tae-Hyun;Yoon, Kun-Hang;Lee, Chang-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.572-578
    • /
    • 2007
  • A Rigid Inflatable Boat (RIB) is now widely used for commercial and military purpose. In this paper, it is supposed that seven-meter-class RIB be used as an unmanned target ship for naval training. In order to develop many tactical maneuvering patterns of a target ship, a simple horizontal maneuvering model of a RIB is needed. Therefore, models of speed and yaw rate are constructed as the first-order differential equations based on Lewandowski#s empirical formula for steady turning circle diameter of a conventional planning hull. Some parameters in the models are determined using the results of sea trial tests. Finally, proposed models are validated through the comparison of the simulation result with the sea trial result for a specific scenario. Even though a simple model does not represent the horizontal motion of a RIB precisely, however, it can be used enough to develop tactical trajectory patterns.

Intelligent Load Distribution of Two Cooperating Robots for Transporting of Large Flat Panel Displays

  • Cho, Hyun-Chan;Kim, Doo-Yong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.25-32
    • /
    • 2005
  • This paper proposes a method for the intelligent load distribution of two cooperating robots(TCRs) using fuzzy logic. The proposed scheme requires the knowledge of the robots' dynamics, which in turn depend upon the characteristics of large flat panel displays(LFPDs) carried by the TCRs. However, the dynamic properties of the LFPD are not known exactly, so that the dynamics of the robots, and hence the required Joint torque, must be calculated for nominal set of the LFPD characteristics. The force of the TCRs is an important factor in carrying the LFPD. It is divided into external force and internal force. In general, the effects of the internal force of the TCRs are not considered in performing the load distribution in terms of optimal time, but they are essential in optimal trajectory planning; if they are not taken into consideration, the optimal scheme is no longer fitting. To alleviate this deficiency, we present an algorithm for finding the internal-force (actors for the TCRs in terms of optimal time. The effectiveness of the proposed system is demonstrated by computer simulations using two three-joint planner robot manipulators.

  • PDF

Gait Implementation of Biped Robot for a continuous human-like walking (이족 보행 로봇의 인간과 유사한 지속보행을 위한 걸음새 구현)

  • Jin, Kwang-Ho;Jang, Chung-Ryoul;Koo, Ja-Hyuk;Choi, Sang-Ho;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3092-3094
    • /
    • 1999
  • This paper deals with the gait generation of Biped Walking Robot (IWR-III) to have a continuous walking pattern like human. For this, trajectory planning with the consideration of kick action is done in each walking step, and the coordinate transformation is done for simplifying the kinematics. The trunk moves continuously for all walking time and moves toward Z-axis. Balancing motion is acquired by FDM(Finite Difference Method) during the walking. By combining 4-types of pre-defined steps, multi-step walking is done. Using numerical simulator, dynamic analysis and system stability is confirmed. Walking motion is visualized by 3D-Graphic simulator. As a result, the motion of balancing joints can be reduced by the trunk ahead effect during kick action, and impactless smooth walking is implemented by the experiment.

  • PDF

Optimal Load Distribution of Transport ing System for Large Flat Panel Displays

  • Kim Jong Won;Jo Jang Gun;Cho Hyun Chan;Kim Doo Yong
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.110-123
    • /
    • 2005
  • This paper proposes an intelligent method for the optimal load distribution of two cooperating robots(TCRs) using fuzzy logic. The proposed scheme requires the knowledge of the robots' dynamics, which in turn depend upon the characteristics of large flat panel displays(LFPDs) carried by the TCRs. However, the dynamic properties of the LFPD are not known exactly, so that the dynamics of the robots, and hence the required joint torque, must be calculated for nominal set of the LFPD characteristics. The force of the TCRs is an important factor in carrying the LFPD. It is divided into external force and internal force. In general , the effects of the internal force of the TCRs are not considered in performing the load distribution in terms of optimal time, but they are essential in optimal trajectory planning: if they are not taken into consideration, the optimal scheme is no longer fitting. To alleviate this deficiency, we present an algorithm for finding the internal-force factors for the TCRs in terms of optimal time. The effectiveness of the proposed system is demonstrated by computer simulations using two three-joint planner robot manipulators.

  • PDF

Spatial Features and Issues in the Process of Establishing and Expanding the Milwaukee Art Museum (밀워키미술관 신·증축에서 나타나는 공간적 특성과 쟁점)

  • Lee, Seung-youp;Byun, Nahyang
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.1
    • /
    • pp.107-115
    • /
    • 2019
  • This research explores a historical trajectory of the Milwaukee Art Museum from its establishment to the third expansion over the last six decades. After established in 1957 by the architect, Eero Saarinen, this museum underwent three expansions led by three different architects including, David Kahler, Santiago Calatrava, and James Shields. Reasons for expanding the museum were varied. A lack of exhibition space, an absence of visual identity, and path interruption problem within urban contexts were the main factors of a series of expansion. Furthermore, this research points out that there are three issues in the process of the expansion. The first is connection issues between the downtown and the lakefront in which the museum has blocked the public flow. The second, there were controversies on the allocation of the expanded space among the main body of the decision including architects, curators, and stakeholders. The last one is relationships among architects. This is related to each architect's attitude toward the museum. Drawing on historical documents and interviews with the regional architects, I argue that the identity and values of the museum have changed over time through the expansions rather than having the invariable.

Faster-than-real-time Hybrid Automotive Underwater Glider Simulation for Ocean Mapping

  • Choi, Woen-Sug;Bingham, Brian;Camilli, Richard
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.3
    • /
    • pp.441-450
    • /
    • 2022
  • The introduction of autonomous underwater gliders (AUGs) specifically addresses the reduction of operational costs that were previously prohibited with conventional autonomous underwater vehicles (AUVs) using a "scaling-down" design philosophy by utilizing the characteristics of autonomous drifters to far extend operation duration and coverage. Long-duration, wide-area missions raise the cost and complexity of in-water testing for novel approaches to autonomous mission planning. As a result, a simulator that supports the rapid design, development, and testing of autonomy solutions across a wide range using software-in-the-loop simulation at faster-than-real-time speeds becomes critical. This paper describes a faster-than-real-time AUG simulator that can support high-resolution bathymetry for a wide variety of ocean environments, including ocean currents, various sensors, and vehicle dynamics. On top of the de facto standard ROS-Gazebo framework and open-sourced underwater vehicle simulation packages, features specific to AUGs for ocean mapping are developed. For vehicle dynamics, the next-generation hybrid autonomous underwater gliders (Hybrid-AUGs) operate with both the buoyancy engine and the thrusters to improve navigation for bathymetry mappings, e.g., line trajectory, are is implemented since because it can also describe conventional AUGs without the thrusters. The simulation results are validated with experiments while operating at 120 times faster than the real-time.

GPS Error Filtering using Continuity of Path for Autonomous Mobile Robot in Orchard Environment (과수원 환경에서 자율주행로봇을 위한 경로 연속성 기반 GPS오정보 필터링 연구)

  • Hyewon Yoon;Jeonghoon Kwak;Kyon-Mo Yang;Byong-Woo Gam;Tae-Gyu Yeo;Jongyoul Park;Kap-Ho Seo
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2024
  • This paper studies a GPS error filtering method that takes into account the continuity of the ongoing path to enhance the safety of autonomous agricultural mobile robots. Real-Time Kinematic Global Positioning System (RTK-GPS) is increasingly utilized for robot position evaluation in outdoor environments due to its significantly higher reliability compared to conventional GPS systems. However, in orchard environments, the robot's current position obtained from RTK-GPS information can become unstable due to unknown disturbances like orchard canopies. This problem can potentially lead to navigation errors and path deviations during the robot's movement. These issues can be resolved by filtering out GPS information that deviates from the continuity of the waypoints traversed, based on the robot's assessment of its current path. The contributions of this paper is as follows. 1) The method based on the previous waypoints of the traveled path to determine the current position and trajectory. 2) GPS filtering method based on deviations from the determined path. 3) Finally, verification of the navigation errors between the method applying the error filter and the method not applying the error filter.

Smart composite repetitive-control design for nonlinear perturbation

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.473-485
    • /
    • 2024
  • This paper proposes a composite form of fuzzy adaptive control plan based on a robust observer. The fuzzy 2D control gains are regulated by the parameters in the LMIs. Then, control and learning performance indices with weight matrices are constructed as the cost functions, which allows the regulation of the trade-off between the two performance by setting appropriate weight matrices. The design of 2D control gains is equivalent to the LMIs-constrained multi-objective optimization problem under dual performance indices. By using this proposed smart tracking design via fuzzy nonlinear criterion, the data link can be further extended. To evaluate the performance of the controller, the proposed controller was compared with other control technologies. This ensures the execution of the control program used to track position and trajectory in the presence of great model uncertainty and external disturbances. The performance of monitoring and control is verified by quantitative analysis. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Therefore, the goal is believed to achieved in the near future by the ongoing development of AI and control theory.

End-of-Life Care for End-stage Heart Failure Patients

  • Ju-Hee Lee;Kyung-Kuk Hwang
    • Korean Circulation Journal
    • /
    • v.52 no.9
    • /
    • pp.659-679
    • /
    • 2022
  • Efforts to improve end-of-life (EOL) care have generally been focused on cancer patients, but high-quality EOL care is also important for patients with other serious medical illnesses including heart failure (HF). Recent HF guidelines offer more clinical considerations for palliative care including EOL care than ever before. Because HF patients can experience rapid, unexpected clinical deterioration or sudden death throughout the disease trajectory, choosing an appropriate time to discuss issues such as advance directives or hospice can be challenging in real clinical situations. Therefore, EOL issues should be discussed early. Conversations are important for understanding patient and family expectations and developing mutually agreed goals of care. In particular, high-quality communication with patient and family through a multidisciplinary team is necessary to define patient-centered goals of care and establish treatment based on goals. Control of symptoms such as dyspnea, pain, anxiety/depression, fatigue, nausea, anorexia, and altered mental status throughout the dying process is an important issue that is often overlooked. When quality-of-life outweighs expanding quantity-of-life, the transition to EOL care should be considered. Advanced care planning including resuscitation (i.e., do-not resuscitate order), device deactivation, site for last days and bereavement support for the family should focus on ensuring a good death and be reviewed regularly. It is essential to ensure that treatment for all HF patients incorporates discussions about the overall goals of care and individual patient preferences at both the EOL and sudden changes in health status. In this review, we focus on EOL care for end-stage HF patients.

Nonlinear Model Predictive Control (NMPC) based shared autonomy for bilateral teleoperation in CFETR Remote Handling

  • Jun Zhang;Xuanchen Zhang;Yong Cheng;Yang Cheng;Qiong Zhang;Kun Lu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4437-4445
    • /
    • 2024
  • During the process of bilateral teleoperation, operators not only need to perform complex maintenance tasks but also have to constantly monitor the safety of the operation, leading to reduced operational efficiency. Therefore, in this paper, we introduce a shared autonomous scheme that intervenes in the operator's command input when necessary, autonomously ensuring the safe operation of the manipulator by employing a rolling horizon planning controller based on Nonlinear Model Predictive Control (NMPC). This controller considers the motion boundaries and collision avoidance constraints of the manipulator, accompanied by the design of corresponding objective functions. To validate the effectiveness of the proposed method, we conduct tests on collision-free trajectory tracking and comprehensive performance with collision constraints, confirming the feasibility and excellent performance of the approach.