• 제목/요약/키워드: Trajectory Following Control

검색결과 98건 처리시간 0.026초

Reference model generation for tracking and ending in steady final state

  • Ahn, Ki-Tak;Chung, Wan-Kyun;Youm, Young-Ii
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.101-106
    • /
    • 2003
  • In the area of tracking control, it is important to design not only the controllers but also the trajectories to which a system has to follow. $5^{th}$ order polynomial is often used with constraints of initial and final states. Smooth ending with possible minimum time is important for many systems because of vibration or jerky motions. Examples are increased with development of technology in smaller, more accurate systems. On the base of a polynomial like trajectory generation method from a paper in ACC2002 and RIC(Robust Internal-loop Compensator) control scheme of Robotics and Bio-mechanics lab. of POSTECH, generalized and expanded polynomial like trajectory generation method is showed.

  • PDF

Mapping을 위한 자율이동로붓의 Wall Following 기법 (A Wall-Following Method of Mobile Robot for Mapping)

  • 이강민;임동균;김경근;서병설
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.102-105
    • /
    • 2005
  • A Effective wall following plays important role for the mapping behaviors which determine the entire memory size and the shape of map before building a map. In case of wall following, attacking those cause by curved wall or obstacles brings a bad stuff that makes ripples on the moving trajectory. These types of ripples come to an end with problems that increase the load of calculation and sensing errors. In this paper, a new sensing method and its corresponding controller are suggested for problems. It minimizes the occurrence of the trajectory ripples.

  • PDF

Robust Adaptive Nonlinear Control for Tilt-Rotor UAV

  • Yun, Han-Soo;Ha, Cheol-Keun;Kim, Byoung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.57-62
    • /
    • 2004
  • This paper deals with a waypoint trajectory following problem for the tilt-rotor UAV under development in Korea (TR-KUAV). In this problem, dynamic model inversion based on the linearized model and Sigma-Phi neural network with adaptive weight update are involved to realize the waypoint following algorithm for the vehicle in the helicopter flight mode (nacelle angle=0 deg). This algorithms consists of two main parts: outer-loop system as a command generator and inner-loop system as stabilizing controller. In this waypoint following problem, the position information in the inertial axis is given to the outer-loop system. From this information, Attitude Command/Attitude Hold logic in the longitudinal channel and Rate Command/Attitude Hold logic in the lateral channel are realized in the inner-loop part of the overall structure of the waypoint following algorithm. The nonlinear simulation based on the TR-KUAV is carried out to evaluate the stability and performance of the algorithm. From the numerical simulation results, the algorithm shows very good tracking performance of passing the waypoints given. Especially, it is observed that ACAH/RCAH logic in the inner-loop has the satisfactory performance due to adaptive neural network in spite of the model error coming from the linear model based inversion.

  • PDF

농용 로봇의 장애물 회피알고리즘 (Control Strategy for Obstacle Avoidance of an Agricultural Robot)

  • 류관희;김기영;박정인;류영선
    • Journal of Biosystems Engineering
    • /
    • 제25권2호
    • /
    • pp.141-150
    • /
    • 2000
  • This study was carried out to de develop a control strategy of a fruit harvesting redundant robot. The method of generating a safe trajectory, which avoids collisions with obstracles such as branches or immature fruits, in the 3D(3-dimension) space using artificial potential field technique and virtual plane concept was proposed. Also, the method of setting reference velocity vectors to follow the trajectory and to avoid obstacles in the 3D space was proposed. Developed methods were verified with computer simulations and with actual robot tests. Fro the actual robot tests, a machine vision system was used for detecting fruits and obstacles, Results showed that developed control method could reduce the occurrences of the robot manipulator located in the possible collision distance. with 10 virtual obstacles generated randomly in the 3 D space, maximum rates of the occurrences of the robot manipulator located in the possible collision distance, 0.03 m, from the obstacles were 8 % with 5 degree of freedom (DOF), 8 % with 6-DOF, and 4% with 7-DOF, respectively.

  • PDF

실시간 임베디드 리눅스 기반 노약자 지원 로봇 개발 (Elderly Assistance System Development based on Real-time Embedded Linux)

  • 고재환;양길진;최병욱
    • 제어로봇시스템학회논문지
    • /
    • 제19권11호
    • /
    • pp.1036-1042
    • /
    • 2013
  • In this paper, an elderly assistance system is developed based on Xenomai, a real-time development framework cooperating with the Linux kernel. A Kinect sensor is used to recognize the behavior of the elderly and A-star search algorithm is implemented to find the shortest path to the person. The mobile robot also generates a trajectory using a digital convolution operator which is based on a Bezier curve for smooth driving. In order to follow the generated trajectory within the control period, we developed real-time tasks and compared the performance of the tracking trajectory with that of non real-time tasks. The real-time task has a better result on following the trajectory within the physical constraints which means that it is more appropriate to apply to an elderly assistant system.

최적제어를 이용한 경로점 유도 (Waypoint guidance using optimal control)

  • 황익호;황태원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1867-1870
    • /
    • 1997
  • Waypoint guidance is a technique used to steer an autonomous vehicle along a desired trajectory. In this paper, a waypoint guidance algorithm for horizontal plane is derived by combining a line following guidance law and a turning guidance law. The line following guidance is derived based on LQR while the turning guidance is designed using rendzvous problem. Through simulation, the proposed method shows a good performance.

  • PDF

A study on the optimal tracking problems with predefined data by using iterative learning control

  • Le, Dang-Khanh;Le, Dang-Phuong;Nam, Taek-Kun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1303-1309
    • /
    • 2014
  • In this paper, we present an iterative learning control (ILC) framework for tracking problems with predefined data points that are desired points at certain time instants. To design ILC systems for such problems, a new ILC scheme is proposed to produce output curves that pass close to the desired points. Unlike traditional ILC approaches, an algorithm will be developed in which the control signals are generated by solving an optimal ILC problem with respect to the desired sampling points. In another word, it is a direct approach for the multiple points tracking ILC control problem where we do not need to divide the tracking problem into two steps separately as trajectory planning and ILC controller.The strength of the proposed formulation is the methodology to obtain a control signal through learning law only considering the given data points and dynamic system, instead of following the direction of tracking a prior identified trajectory. The key advantage of the proposed approach is to significantly reduce the computational cost. Finally, simulation results will be introduced to confirm the effectiveness of proposed scheme.

Observer-based Distributed Consensus Algorithm for Multi-agent Systems with Output Saturations

  • Lim, Young-Hun;Lee, Gwang-Seok
    • Journal of information and communication convergence engineering
    • /
    • 제17권3호
    • /
    • pp.167-173
    • /
    • 2019
  • This study investigates the problem of leader-following consensus for multi-agent systems with output saturations. This study assumes that the agents are described as a neutrally stable system, and the leader agent generates the bounded trajectory within the saturation level. Then, the objective of the leader-following consensus is to track the trajectory of the leader by exchanging information with neighbors. To solve this problem, we propose an observer-based distributed consensus algorithm. Then, we provide a consensus analysis by applying the Lyapunov stability theorem and LaSalle's invariance principle. The result shows that the agents achieve the leader-following consensus in a global sense. Moreover, we can achieve the consensus by choosing any positive control gain. Finally, we perform a numerical simulation to demonstrate the validity of the proposed algorithm.

이족 보행로봇의 동적 보행 제어에 관한 연구 (A Study on Dynamic Walking Control of Biped Robot)

  • 심병균;정양근;심현석;이우송
    • 한국산업융합학회 논문집
    • /
    • 제17권4호
    • /
    • pp.245-254
    • /
    • 2014
  • In this paper, stable and robust dynamic walking for a biped motion is proposed. To success this objective, the following structures are processed. In this paper, the proposed control method is one that adjusts actual zero moment position to move to the closest possible point in the stable area instead of following desired zero moment position. This minimizes energy consumption with the smallest joint movements. The proposed control method makes mechanical energy that drives lower limb of the bipedal robot efficient. In this paper, walking experiment is carried out with the three control structures mentioned above. The trajectory generated by off-line is illustrated by performing to walking on flat ground. experiment with an obstacle whose height is lower than that of trajectory is executed to validate dynamic motion.

Robust Minimum-Time Control with Coarse/Fine Dual-Stage Mechanism

  • Kwon, Sang-Joo;Cheong, Joo-No
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1834-1847
    • /
    • 2006
  • A robust minimum-time control (RMTC) strategy is addressed and it is extended to the dual-stage servo design. Rather than conventional switching type sub-optimal controls, it is a reference following control approach where the predetermined minimum-time trajectory (MTT) is tracked by the perturbation compensator based feedback controller. First, the minimum-time trajectory for a mass-damper system is derived. Then, the perturbation compensator to achieve robust tracking performance in spite of model uncertainty and external disturbance is suggested. The RMTC is also applied to the dual-stage positioner which consists of coarse actuator and fine one. To best utilize the actuation redundancy of the dual-stage mechanism, a null-motion controller to actively regulate the relative motion between the two stages is formulated. The performance of RMTC is validated through simulation and experiment.