• Title/Summary/Keyword: Trajectory Estimation

Search Result 223, Processing Time 0.032 seconds

A trajectory estimation study of a hypersonic vehicle

  • Imado, Fumiaki;Kuroda, Takeshi;Ichikawa, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.643-646
    • /
    • 1994
  • A method of trajectory error estimation of a hypersonic vehicle, by a covariance analysis technique is presented and discussed. The method itself is a wellkown technique, however, the thema has been rarely treated. As the importance is increasing, it is explained here and some of our newly deviced techniques are also presented.

  • PDF

Application of trajectory data mining to improve the estimation accuracy of launcher trajectory by telemetry ground system (원격자료수신장비의 발사체궤적 추정정확도 향상을 위한 궤적데이터마이닝의 적용)

  • Lee, Sunghee;Kim, Doo-gyung;Kim, Keun-hyung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.5
    • /
    • pp.1-11
    • /
    • 2015
  • This paper is focused on how the trajectory of launch vehicle could be optimally estimated by the quadratic regression of trajectory data mining for the operation of telemetry ground system in NARO space center during real-time. To receive the telemetry data, the telemetry ground system has to track the space launch vehicle without tracking loss, and it is possible by the well-designed algorithm to estimate a flight position in real-time. For this reason, the quadratic regression model instead of interpolation was considered to estimate the exact position data of launch vehicle and the improvement of antenna performance. For analysis, the real trajectory data which had been logged during NARO 1st launch mission were used, the estimation result of launcher current position was analyzed by the mathematical modeling. In conclusion, the algorithm using quadratic regression based on trajectory data mining showed the better performance than previous interpolation algorithm to estimate the next flight position and the antenna driving performance.

Dynamic control of mobile robots using a robust.adaptive control method (강인.적응제어 방식에 의한 이동로봇의 동력학 제어)

  • 남재호;백승민;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.449-452
    • /
    • 1996
  • In this paper, a robust.adaptive control scheme is presented for precise trajectory tracking of nonholonomic mobile robots. In the controller, a set of desired trajectory is defined and used in constructing the control input which constitutes the main part of the proposed controller. The stable operating characteristics such as precise trajectory tracking, parameter estimation, disturbance suppression, tec., are shown through experiments as well as computer simulation.

  • PDF

Optimal Temperature Tracking Control of a Polymerization Batch Reactor by Adaptive Input-Output Linearization

  • Noh, Kap-Kyun;Dongil Shin;Yoon, En-Sup;Rhee, Hyun-Ku
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.62-74
    • /
    • 2002
  • The tracking of a reference temperature trajectory in a polymerization batch reactor is a common problem and has critical importance because the quality control of a batch reactor is usually achieved by implementing the trajectory precisely. In this study, only energy balances around a reactor are considered as a design model for control synthesis, and material balances describing concentration variations of involved components are treated as unknown disturbances, of which the effects appear as time-varying parameters in the design model. For the synthesis of a tracking controller, a method combining the input-output linearization of a time-variant system with the parameter estimation is proposed. The parameter estimation method provides parameter estimates such that the estimated outputs asymptotically follow the measured outputs in a specified way. Since other unknown external disturbances or uncertainties can be lumped into existing parameters or considered as another separate parameters, the method is useful in practices exposed to diverse uncertainties and disturbances, and the designed controller becomes robust. And the design procedure and setting of tuning parameters are simple and clear due to the resulted linear design equations. The performances and the effectiveness of the proposed method are demonstrated via simulation studies.

A Finite Impulse Response Fixed-lag Smoother for Discrete-time Nonlinear Systems (이산 비선형 시스템에 대한 유한 임펄스 응답 고정 시간 지연 평활기)

  • Kwon, Bo-Kyu;Han, Sekyung;Han, Soohee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.807-810
    • /
    • 2015
  • In this paper, a finite impulse response(FIR) fixed-lag smoother is proposed for discrete-time nonlinear systems. If the actual state trajectory is sufficiently close to the nominal state trajectory, the nonlinear system model can be divided into two parts: The error-state model and the nominal model. The error state can be estimated by adapting the optimal time-varying FIR smoother to the error-state model, and the nominal state can be obtained directly from the nominal trajectory model. Moreover, in order to obtain more robust estimates, the linearization errors are considered as a linear function of the estimation errors. Since the proposed estimator has an FIR structure, the proposed smoother can be expected to have better estimation performance than the IIR-structured estimators in terms of robustness and fast convergence. Additionally the proposed method can give a more general solution than the optimal FIR filtering approach, since the optimal FIR smoother is reduced to the optimal FIR filter by setting the fixed-lag size as zero. To illustrate the performance of the proposed method, simulation results are presented by comparing the method with an optimal FIR filtering approach and linearized Kalman filter.

Design of Cubic Spline Interpolator using a PVAJT Motion Planner (PVAJT 모션플래너를 이용한 Cubic Spline 보간기의 설계)

  • Shin, Dong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.33-38
    • /
    • 2011
  • A cubic spline trajectory planner with arc-length parameter is formulated with estimation by summing up to the 3rd order in Taylor's expansion. The PVAJT motion planning is presented to reduce trajectory calculation time at every cycle time of servo control loop so that it is able to generate cubic spline trajectory in real time. This method can be used to more complex spline trajectory. Several case studies are executed with different values of cycle time and sampling time, and showed the advantages of the PVAJT motion planner. A DSP-based motion controller is designed to implement the PVAJT motion planning.

Path Planning for Static Obstacle Avoidance: ADAM III (정적 장애물 회피를 위한 경로 계획: ADAM III)

  • Choi, Heejae;Song, Bongsob
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.241-249
    • /
    • 2014
  • This paper presents a path planning algorithm of an autonomous vehicle (ADAM III) for collision avoidance in the presence of multiple obstacles. Under the requirements that a low-cost GPS is used and its computation should be completed with a sampling time of sub-second, heading angle estimation is proposed to improve performance degradation of its measurement and a hierarchical structure for path planning is used. Once it is decided that obstacle avoidance is necessary, the path planning consists in three steps: waypoint generation, trajectory candidate generation, and trajectory selection. While the waypoints and the corresponding trajectory candidates are generated based on position of obstacles, the final desired trajectory is determined with considerations of kinematic constraints as well as an optimal condition in a term of lateral deviation. Finally the proposed algorithm was validated experimentally through field tests and its demonstration was performed in Autonomous Vehicle Competition (AVC) 2013.

Optimal Trajectory Planning for Capturing a Mobile Object (이동물체 포획을 위한 최적 경로 계획)

  • 황철호;이상헌;조방현;이장명
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.696-702
    • /
    • 2004
  • An optimal trajectory generation algorithm for capturing a moving object by a mobile robot in real-time is proposed in this paper. The linear and rotational velocities of the moving object are estimated using the Kalman filter, as a state estimator. For the estimation, the moving object is tracked by a 2-DOF active camera mounted on the mobile robot, which enables a mobile manipulator to track the mobile robot until the capturing moment. The optimal trajectory for capturing the moving object is dependent on the initial conditions of the mobile robot as well as the moving object. Therefore, real-time trajectory planning for the mobile robot is definitely required for the successful capturing of the moving object. The performance of proposed algorithm is verified through the real experiments and the superiority is demonstrated by comparing to other algorithms.

Estimation of Moving Target Trajectory using Optimal Smoothing Filter based on Beamforming Data (최적 스무딩 필터를 이용한 빔형성 정보 기반 이동 목표물 궤적 추정)

  • Jeong, Junho;Kim, Gyeonghun;Go, Yeong-Ju;Lee, Jaehyung;Kim, Seungkeun;Choi, Jong-Soo;Ha, Jae-Hyoun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1062-1070
    • /
    • 2015
  • This paper presents an application of an optimal smoothing filter for moving target tracking problem based on measured noise source. In order to measure distance and velocity for the moving target, a beamforming method is applied to use the noise source by using microphone array. Also a Kalman filter and an optimal smoothing algorithm are adopted to improve accuracy of trajectory estimation by using a Singer target model. The simulation is conducted with a missile dynamics to verify performance of the optimal smoothing filter, and a model rocket is used for experiment environment to compare the trajectory estimation results between the beamforming, the Kalman filter, and the smoother. The Kalman filter results show better tracking performance than the beamforming technique, and the estimation results of the optimal smoother outperform the Kalman filter in terms of trajectory accuracy in the experiment results.

A Time-to-go Estimator Design for Proportional Navigation Guided Missiles using Kalman Filters (칼만 필터를 이용한 비례항법유도 도달시간 추정기 설계)

  • Whang, Ick-Ho;Ra, Won-Sang;Park, Hae-Rhee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.740-744
    • /
    • 2008
  • In this paper, we propose a new time-to-go estimation filter for PN guided missiles. The proposed estimator is derived based on the approximation of the length of the PNG homing trajectory that we newly introduced using the special coordinate system. The coordinate system is convenient for taking the target movement into account. In addition, compared with the previous time-to-go estimation techniques, the parameters required for evaluating the length can be obtained only with the seeker measurements. Moreover, the seeker measurement error statistics can effectively be considered since our filter is derived based on the Kalman filter theory. Simulation result for a typical anti-ship see-skimming missile homing trajectory shows the excellent performance of the proposed filter.