Objectives: This study aimed to evaluate the impact of a training course on pharmacovigilance for future doctors of Korean medicine (DKM). Methods: In 2020, a pharmacovigilance training course was conducted for 57 senior students of a Korean medicine (KM) college, and its impact to the students were assessed in terms of the knowledge, attitudes, and perceptions of these students at three-time points: pre-training, post-training, and 4-6 months after the end of the training. Results: A total of 38 students completed the survey. The average score from the knowledge test increased significantly after training compared to prior to the training (5.47±2.140, 6.61±1.001, respectively, p<0.001) and was maintained until the final survey (6.61±1.220). The rate of correct answers to most of the knowledge test questions increased after the training but decreased in the final survey. In terms of attitudes, self-confidence in causality assessment (2.63±1.025, 4.58±0.826, p<0.001) and spontaneous reporting (2.08±1.050, 4.74±0.446, p<0.001) significantly increased after the training and then slightly decreased (3.92±1.171, 4.40±0.755). The perception level was high prior to the training, and this pattern was maintained throughout the study period. Students responded that pharmacovigilance education was necessary for DKM after training, and for the undergraduates of KM colleges. Conclusions: This study shows that this pharmacovigilance training course is effective for students majoring in KM but that retraining is required at least 6 months after the initial training. Further follow-up studies are needed to ensure that students actively participate in spontaneous reporting after graduation, and continuous education should be provided to graduates.
Journal of the Korea Society of Computer and Information
/
v.10
no.5
s.37
/
pp.95-102
/
2005
A Parallel Processing model by considering a spatiotemporal parallelism is presented for the training procedure of the MLP neural network. We tried to design the flexible Parallel Processing model by simultaneously applying both of the training-set decomposition for a temporal parallelism and the network decomposition for a spatial parallelism. The analytical Performance evaluation model shows that when the problem size is extremely large, the speedup of each implementation depends, in the extreme, on whether the problem size is pattern-size intensive or pattern-quantify intensive.
International Journal of Industrial Entomology and Biomaterials
/
v.7
no.1
/
pp.69-73
/
2003
Specific leaf weight (SLW), defined as the mass of tissue per unit leaf area has been found to be an important physiological parameter as it indicates the relative thickness of leaves. Greater SLW provides more photosynthetic potential per unit area of leaf and hence it is frequently been considered as correlated with photosynthesis in several plant species. Collections of 165 mulberry (Morus sp.) germplasm accessions, both Indian and exotic in origin were evaluated for their variability with respect to SLW. The mean specific leaf weight ranged from 35.3 to $72.3 g/m^{-2}$. The distribution of SLW was found to be normal. High heritability (97.08%) and a small difference between genotypic and phenotypic variance demonstrates the genetic control over SLW. Significant heterotic effect with respect to SLW was observed in crosses when parents with high and low SLW were chosen.
Kim, Won-Il;Lee, Yun-Kyung;Wang, Dyuk-Hyun;Kang, Jae-Kwan;Kim, Byung-Chang;Lee, Kwan-Cheol;Jung, In-Ryung
Journal of the Korean Society of Manufacturing Process Engineers
/
v.4
no.3
/
pp.57-62
/
2005
Neural networks, which have learning and self-organizing abilities, can be advantageously used in the pattern recognition. Neural network techniques have been widely used in monitoring and diagnosis, and compare favourable with traditional statistical pattern recognition algorithms, heuristic rule-based approaches, and fuzzy logic approaches. In this study the fault diagnosis of the face-milling using the artificial neural network was investigated. After training, the sample which measure load current was monitored by constant output results.
Ha, Kyeong-Min;Jo, Jeong-Ho;Hong, Jae-Kuen;Kim, Soo-Joong
Proceedings of the KIEE Conference
/
1988.07a
/
pp.10-13
/
1988
An isolated-word recognition method using adaptively partitioned multisection codebooks is proposed. Each training utterance was divided into several sections according to its pattern extracted by labeling technique. For each pattern, reference codebooks were generated by clustering the training vectors of the same section. In recognition procedure, input speech was divided into the sections by the same method used in codebook generation procedure, and recognized to the reference word whose codebook represented the smallest average distortion. The proposed method was tested for 100 Korean words and attained recognition rate about 96 percent.
The reduction of the dynamic response of an offshore structure subjected to wind-generated random ocean waves is of extreme significance in the aspects of serviceability, fatigue life and safety of the structure. In this study, a new neuro-control scheme is applied to the vibration control of a fixed offshore platform under random wave loads to examine the applicability of the proposed method. It is called the Lattice Probabilistic Neural Network (LPNN), as it utilizes lattice pattern of state vectors as the training data of PNN. When control results of the LPNN are compared with those of the NN and PNN, LPNN showed better performance in effectively suppressing the structural responses in a shorter computational time.
The Transactions of the Korea Information Processing Society
/
v.3
no.3
/
pp.429-438
/
1996
An incremental learning algorithm is presented that constructs a multilayer perceptron whose size is optimal for solving a given problem. Unlike conventional algorithms in which a fixed size training set is processed repeat-edly, the method uses an increasing number of critical examples to find a necessary and sufficient number of hidden units for learning the entire data. Experimental results in hand- writtern digit recognition shows that the network size optimization combined with incremental pattern selection generalizes significantly better and converges faster than conventional methods.
We performed experimental studies on the muscle activities in the lower limbs for the different movement patterns on an unstable platform. A training system for postural control using an unstable platform that we previously developed was applied for the experiments. This unstable platform provides 360 degrees of movement allowing for training of posture in various directions and provides simultaneous excitations to visual sensory, somatic sensation and vestibular organs. Compare with the stable platform, keeping body balance on the unstable platform requests more effective sensation from vision, vestibular sense and somatic sense. Especially, the somatosensory inputs from the muscle proprioceptors and muscle force are crucial. To study the muscle activities for the different movement patterns and find the best training method for improving the ability of postural control through training and improving the lower extremity muscular strength, fifteen young healthy participants went through trainings and experiments. The participants were instructed to move the center of pressure following the appointed movement pattern while standing on the unstable platform. The electromyographies of the muscles in the lower limbs were recorded and analyzed in the time and the frequency domain. Our experimental results showed the significant differences in muscle activities for the different movement patterns. Especially, the spectral energy of electromyography signals in muscle for the movement pattern in anterior-posterior direction was significantly higher than those occurred in the other patterns. The muscles in the lower leg, especially tibialis anterior and gastrocnemius were more activated compared to the others for controlling the balance of body on the unstable platform. The experimental results suggest that, through the choice of different movement pattern, the training for lower extremity strength could be performed on specific muscles in different intensity. And, the ability of postural control could be improved by the training for lower extremity strength.
Journal of the Korean Academy of Clinical Electrophysiology
/
v.7
no.1
/
pp.43-48
/
2009
Purpose : The purpose of this study was to study the effect of rectus abdominal muscle contraction by proprioceptive neuromuscular facilitation trunk stabilization training using extremity simultaneous pattern (PNF trunk stabilization training) and traditional trunk stabilization training methods. Methods : A group of 24 adults male and female, healthy, with no previous medical history nor disability in neuromuscular system and musculoskeletal system was chosen as subjects, and was divided into a control group, a PNF trunk stabilization training group and a traditional trunk stabilization training group. Experiments were performed on the last two groups, 3 times a week for 6 weeks, totaling 18 times. Using a dynamometer, muscle strength and endurance time on trunk flexion were measured before and after each experiment, and surface electromyography in left and right rectus abdominis were measured. Results : following results were obtained; 1. As for the change in the maximal voluntary isometric contraction (MVIC), all subjects in the trunk stabilization training group showed significant difference from those in the control group. 2. As for surface electromyography measurement and the changes in root mean square at the time of trunk flexion, in the left rectus abdominis, PNF trunk stabilization training group showed significant difference from the control group, while in the right rectus abdominis, traditional trunk stabilization training group showed significant difference. Conclusion : To sum up the results, both trunk stabilization training groups showed improvement in the MVIC of abdominal muscle, motor unit action potential activity, but the difference between two trunk stabilization training groups was not significant. Therefore, while trunk stabilization training significantly improved abdominal muscle contraction, but the difference attributable to training methods was found to be insignificant.
This paper presents an efficient algorithm for the estimation of damage location and severity in bridge structures using Probabilistic Neural Network (PNN). Generally, the Back Propagation Neural Network (BPNN)-based damage detection methods need a lot of training patterns for neural network learning process and the optimum architecture of a BPNN is selected by trial and error. In this paper, the PNN instead of the conventional BPNN is used as a pattern classifier. The modal properties of damaged structure are somewhat different from those of undamaged one. The basic idea of proposed algorithm is that the PNN classifies a test pattern which consists of the modal characteristics from damaged structure, how close it is to each training pattern which is composed of the modal characteristics from various structural damage cases. In this algorithm, two PNNs are sequentially used. The first PNN estimates the damage location using mode shape and the results of the first PNN are put into the second PNN for the damage severity estimation using natural frequency. The proposed damage assessment algorithm using the PNN is applied to a cable-stayed bridge to verify its applicability.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.