• Title/Summary/Keyword: Train-track Interaction

Search Result 106, Processing Time 0.028 seconds

An Experimental Study on the Longitudinal Resistance Behavior of an Existing Ballastless Steel Plate Girder Bridge (기존 무도상 판형교 궤도의 종저항거동에 대한 실험)

  • Kim, Kyoungho;Hwang, Inyoung;Baek, Inchul;Choi, Sanghyun
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.327-337
    • /
    • 2018
  • Since the track of the ballastless steel plate girder bridge is connected to a main girder without a deck and a ballast, the impact generated by train passage is transferred directly to bridge main members, and it can cause frequent damage of the bridge as well as higher noise and vibration level. Applying the CWR (Continuously Welded Rail) technology can reduce this structural problems, and, to this end, it is necessary to understand the characteristics of factors influencing vehicle-track or track-bridge interaction. In this paper, experimental study results are presented for examining the longitudinal resistance characteristics of the track, including a rail fastener, a sleeper fastener, and a track skeleton, installed on a ballastless steel plate girder bridge. The experiment is conducted using a disposed bridge from service, which is transported to a laboratory. The experimental results show that the rail fastener satisfies the performance criteria of the longitudinal resistance presented in KRS TR 0014-15, and the longitudinal resistance of old and new type sleeper fasteners is higher than the values provided in the existing research. Also, the unloaded longitudinal resistance of the ballastless track is between the ballast and the concrete tracks.

Dynamic analysis of metro vehicle traveling on a high-pier viaduct under crosswind in Chongqing

  • Zhang, Yunfei;Li, Jun;Chen, Zhaowei;Xu, Xiangyang
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.299-312
    • /
    • 2019
  • Due to the rugged terrain, metro lines in mountain city across numerous wide rivers and deep valleys, resulting in instability of high-pier bridge and insecurity of metro train under crosswind. Compared with the conditions of no-wind, crosswind triggers severer vibration of the dynamic system; compared with the short-pier viaduct, the high-pier viaduct has worse stability under crosswind. For these reasons, the running safety of the metro vehicle traveling on a high-pier viaduct under crosswind is analyzed to ensure the safe operation in metro lines in mountain cities. In this paper, a dynamic model of the metro vehicle-track-bridge system under crosswind is established, in which crosswind loads model considering the condition of wind zone are built. After that, the evaluation indices and the calculation parameters have been selected, moreover, the basic characteristics of the dynamic system with high-pier under crosswind are analyzed. On this basis, the response varies with vehicle speed and wind speed are calculated, then the corresponding safety zone is determined. The results indicate that, crosswind triggers drastic vibration to the metro vehicle and high-pier viaduct, which in turn causes running instability of the vehicle. The corresponding safety zone for metro vehicle traveling on the high-pier is proposed, and the metro traffic on the high-pier bridge under crosswind should not exceed the corresponding limited vehicle speed to ensure the running safety.

Evaluation of Residual Stress for Thermal Damage of Railway Wheel Tread (차륜 답면의 열손상에 대한 잔류응력 평가)

  • Kwon, Seok-Jin;Seo, Jung-Won;Lee, Dong-Hyung;Ham, Young-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.537-542
    • /
    • 2011
  • The thermo-mechanical interaction between brake block and wheel tread during braking has been found to cause thermal crack on the wheel tread. Due to thermal expansion of the rim material, the thermal cracks will protrude from the wheel tread and be more exposed to wear during the wheel/block contact than the rest of the tread surface. The wheel rim is in residual compression stress when is new. After service running, the region in the tread has reversed to tension. This condition can lead to the formation and growth of thermal cracks in the rim which can ultimately lead to premature failure of wheel. In the present paper, the thermal cracks of railway wheel, one of severe damages on the wheel tread, were evaluated to understand the safety of railway wheel in running condition. The residual stresses for damaged wheel which are applied to tread brake are investigated. Mainly X-ray diffusion method is used. Under the condition of concurrent loading of continuous rolling contact with rails and cyclic frictional heat from brake blocks, the reduction of residual stress is found to correlate well with the thermal crack initiation.

Dynamic Interaction Evaluation of Maglev Vehicle and the Segmented Switching System (자기부상열차 차량과 분기기 동적상호작용 시험 평가)

  • Lee, Jong-Min;Han, Jong-Boo;Kim, Sung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.576-582
    • /
    • 2017
  • The switching system in a maglev train is an indispensable element for distributing train routes, and it should be designed to ensure safe operation. Unlike conventional wheels on rails, the switching track in EMS-type maglev is supported by a group of 3 to 4 steel girders. When the vehicle changes its route, the segmented track allows the girders to change from a straight position to a curved one with a small radius of curvature. Hence, the structural characteristics of the segmented switching system may affect the levitation stability of the maglev vehicle. This study experimentally evaluates the dynamic interaction between maglev vehicles and a segmented switching system. The results may be helpful for improving the switching system. The measured levitation and lateral air gaps were evaluated at a vehicle speed of 25 km/h, and the ride quality of the Maglev vehicle was determined to be "comfortable" according to the UIC 513 standard.

Dynamic Behavior Analysis of PSC Train Bridge Friction Bearings for Considering Next-generation High-speed Train (차세대 고속철의 증속을 고려한 PSC 철도교 마찰 교량받침의 동적 거동 해석)

  • Soon-Taek Oh;Seong-Tae Yi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.39-46
    • /
    • 2023
  • In this study, the dynamic behavior of friction bearings of PSC (Pre-Stressed Concrete) box train continuous bridge was numerically analyzed at 10 km/h intervals up to 600 km/h according to the increasing speed of the next-generation high-speed train. A frame model was generated targeting the 40-meter single-span and two-span continuous PSC box bridges in the Gyeongbu High-Speed Railway section. The interaction forces including the inertial mass vehicle model with 38 degrees of freedom and the irregularities of the bridge and track were considered. It was calculated the longitudinal displacement, cumulative sliding distance and displacement speed of the bridge bearings at each running speed so that compared with the dynamic behavior trend analysis of the bridge. In addition, long-term friction test standards were applied to evaluate the durability of friction plates.

The case study of wear and defects on the wheel tread for Metro (전동차 차륜 답면의 마모 및 결함에 대한 사례연구)

  • Lee Nam-Jin;Kim Jung-Ha;Kim Chul-Gun;Kim Jin-Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.789-797
    • /
    • 2004
  • The wear and defects on the wheel tread are caused by the interface between wheel and rail, the suspension system on bogie, the track condition and etc, which are interacted with complex mechanism. Because of the difficulty of analysis of wheel and rail interaction, the measuring data are necessary for improvement of wheel design and maintenance of train. On this case study, the pattern of wheel wears and defects are presented and lifetime of wheel and the reprofiling period are estimated on a basis of the measured results.

  • PDF

Running Safety Analysis of Railway Vehicle Systems for Ground Vibration (철도 차량의 지반진동에 의한 주행안전성 평가)

  • Choi, Jun-Sung;Jo, Man-Sup;Lee, Jin-Moo
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.288-295
    • /
    • 2006
  • In this study, dynamic behavior of the vehicles is analyzed, while the track is subjected to lateral vibrations due to earthquake and blasting load. A computer program(WERIA, Wheel Rail Interaction Analysis) is used, which can simulate dynamic responses of vehicles subjected to lateral vibrations. The analysis considers two types of vehicles: I.e. power cars of KTX and Busan subway train. It can also consider the interaction with sub-structures such as tracks and soil. The creep force module is considered, and the running safety of railway vehicles subjected to earthquake and blasting loading is studied. Based on the results of this study, the running safety of the vehicles can be confirmed against lateral vibration.

Experimental Analysis of Vibration Transfer Characteristics of an Elevated Railroad Station (철도 선하역사 진동 전달 특성의 실험적 분석)

  • Choi, Sanghyun;Yoo, Yong;Kim, Jinho;Kwon, Segon
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 2015
  • To reduce noise inside an elevated railroad station, the vibration of the station structure should be lowered, and to establish more effective anti-vibration measures it is required that, reflecting the track-bridge-structure interaction, the transfer characteristics of vibration induced by a train is well identified. In this paper, the current status of domestic railroad stations is classified, and the vibration transfer characteristics is analyzed via measurement data from representative elevated stations. From the analysis results on the measurement data, in transferring vibration from the track to the structure, remarkable vibration reduction in higher frequency range is observed, and, in some stations, amplified response characteristics in lower frequency range is identified. Also, for stations with floating track system or TPS type, relatively greater reduction in transferred vibration is observed.

Study on the Levitation Stability of Maglev Vehicle considering the Vibration of Steel Switch Track (강재 분기기의 진동을 고려한 자기부상열차 부상안정성 연구)

  • Han, Jong-Boo;Park, Jinwoo;Han, Hyung-Suk;Lee, Jong-Min;Kim, Sung-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.175-185
    • /
    • 2015
  • Generally, in the train area, switch tracks have required high reliability because this system is directly associated with derailment. Especially, switch tracks of Maglev vehicles must be moved in terms of the whole geometric characteristics, in which the bogies are encased in the switch track. For this reason, switch track was constructed with steel lighter than concrete girders. But, the steel switch track was weak because of structural vibration as well as structural deformation. Therefore, it is important to predict the levitation stability when a vehicle passes over flexible switch track. The aims of this paper are to develop a coupled dynamic model to describe the relationship between a Maglev vehicle and switch track and to predict the levitation stability. In order to develop the coupled dynamic model, a three dimensional vehicle model was developed based on multibody dynamics; a switch model was made using the modal superposition method. And, the developed model was verified using comparison measured data.

Verified 20-car Model of High-speed Train for Dynamic Response Analysis of Railway Bridges (검증된 고속철도 차량의 20량편성 정밀모형에 의한 철도교량의 동적응답 분석)

  • 최성락;이용선;김상효;김병석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.693-702
    • /
    • 2002
  • The aim of this study is to develop a 3-dimensional dynamic analysis model, capable of considering the interaction between vehicles and bridges more accurately. The dynamic analysis model is developed with the high-speed train (KTX) and a 2-span continuous prestressed concrete box girder bridge with a double track. The 20-car model is developed using the moving vehicle model for the regular trainset. Three-dimensional frame elements are used for the bridge model. Using the developed models, a dynamic behavior analysis program is coded. The analytical results are compared with the dynamic field test results and found to be valid to yield quite accurate dynamic responses. Based on the results of this study, the hybrid model, made up of the moving vehicle model for the heaviest power car and the moving force model for the other cars, is quite simple and effective without loosing the accuracy that much. Under the coincidence condition of two trains traveling with resonance velocity in the opposite directions, it is necessary to check not only the dynamic responses of the bridge with one-way traffic but those with two- way coincidence.