• Title/Summary/Keyword: Train position detection

Search Result 54, Processing Time 0.02 seconds

Performance Evaluation of YOLOv5 Model according to Various Hyper-parameters in Nuclear Medicine Phantom Images (핵의학 팬텀 영상에서 초매개변수 변화에 따른 YOLOv5 모델의 성능평가)

  • Min-Gwan Lee;Chanrok Park
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2024
  • The one of the famous deep learning models for object detection task is you only look once version 5 (YOLOv5) framework based on the one stage architecture. In addition, YOLOv5 model indicated high performance for accurate lesion detection using the bottleneck CSP layer and skip connection function. The purpose of this study was to evaluate the performance of YOLOv5 framework according to various hyperparameters in position emission tomogrpahy (PET) phantom images. The dataset was obtained from QIN PET segmentation challenge in 500 slices. We set the bounding box to generate ground truth dataset using labelImg software. The hyperparameters for network train were applied by changing optimization function (SDG, Adam, and AdamW), activation function (SiLU, LeakyRelu, Mish, and Hardwish), and YOLOv5 model size (nano, small, large, and xlarge). The intersection over union (IOU) method was used for performance evaluation. As a results, the condition of outstanding performance is to apply AdamW, Hardwish, and nano size for optimization function, activation function and model version, respectively. In conclusion, we confirmed the usefulness of YOLOv5 network for object detection performance in nuclear medicine images.

A Design H/W for Position Detection of Train Using the PDOA (Phase Difference of Arriving) (위상차(PDOA)를 이용한 열차 위치검지의 H/W 설계)

  • Jeong R.G.;Yoon Y.K;Cho H.S.;Lee B.S.;Chung S.K.;Kim Y.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.173-176
    • /
    • 2003
  • TOA(Time of Arrival) 및 TDOA(Time Difference of Arrival)경우 무선국의 시간동기화를 위해서 고도의 기술을 요구하고 있으며, 시간동기오차에 따른 위치검지의 정밀도가 낮아지는 문제가 있어 이를 극복하기 위하여 위상차(PDOA)를 이용한 새로운 열차검지기법의 제안에 따른 구현을 위하여 H/W의 설계에 대하여 기술하고자 한다 본 시스템은 전과의 전달 속도($\lambda$)를 응용하여 기준 주파수인 1.5MHz를 송신 시스템과 수신 시스템의 기준 주파수와 비교하여 그 위상의 차이를 비교하여 지연된 시간을 구한 후 이를 거리로 환산하는 시스템으로서 H/W와 S/W로 구분하여 구현 $\cdot$ 설계되는데 본 논문에서는 H/W설계에 대하여 기숙하였다.

  • PDF

Hand Gesture Recognition Algorithm Robust to Complex Image (복잡한 영상에 강인한 손동작 인식 방법)

  • Park, Sang-Yun;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1000-1015
    • /
    • 2010
  • In this paper, we propose a novel algorithm for hand gesture recognition. The hand detection method is based on human skin color, and we use the boundary energy information to locate the hand region accurately, then the moment method will be employed to locate the hand palm center. Hand gesture recognition can be separated into 2 step: firstly, the hand posture recognition: we employ the parallel NNs to deal with problem of hand posture recognition, pattern of a hand posture can be extracted by utilize the fitting ellipses method, which separates the detected hand region by 12 ellipses and calculates the white pixels rate in ellipse line. the pattern will be input to the NNs with 12 input nodes, the NNs contains 4 output nodes, each output node out a value within 0~1, the posture is then represented by composed of the 4 output codes. Secondly, the hand gesture tracking and recognition: we employed the Kalman filter to predict the position information of gesture to create the position sequence, distance relationship between positions will be used to confirm the gesture. The simulation have been performed on Windows XP to evaluate the efficiency of the algorithm, for recognizing the hand posture, we used 300 training images to train the recognizing machine and used 200 images to test the machine, the correct number is up to 194. And for testing the hand tracking recognition part, we make 1200 times gesture (each gesture 400 times), the total correct number is 1002 times. These results shows that the proposed gesture recognition algorithm can achieve an endurable job for detecting the hand and its' gesture.

Restoring Omitted Sentence Constituents in Encyclopedia Documents Using Structural SVM (Structural SVM을 이용한 백과사전 문서 내 생략 문장성분 복원)

  • Hwang, Min-Kook;Kim, Youngtae;Ra, Dongyul;Lim, Soojong;Kim, Hyunki
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.131-150
    • /
    • 2015
  • Omission of noun phrases for obligatory cases is a common phenomenon in sentences of Korean and Japanese, which is not observed in English. When an argument of a predicate can be filled with a noun phrase co-referential with the title, the argument is more easily omitted in Encyclopedia texts. The omitted noun phrase is called a zero anaphor or zero pronoun. Encyclopedias like Wikipedia are major source for information extraction by intelligent application systems such as information retrieval and question answering systems. However, omission of noun phrases makes the quality of information extraction poor. This paper deals with the problem of developing a system that can restore omitted noun phrases in encyclopedia documents. The problem that our system deals with is almost similar to zero anaphora resolution which is one of the important problems in natural language processing. A noun phrase existing in the text that can be used for restoration is called an antecedent. An antecedent must be co-referential with the zero anaphor. While the candidates for the antecedent are only noun phrases in the same text in case of zero anaphora resolution, the title is also a candidate in our problem. In our system, the first stage is in charge of detecting the zero anaphor. In the second stage, antecedent search is carried out by considering the candidates. If antecedent search fails, an attempt made, in the third stage, to use the title as the antecedent. The main characteristic of our system is to make use of a structural SVM for finding the antecedent. The noun phrases in the text that appear before the position of zero anaphor comprise the search space. The main technique used in the methods proposed in previous research works is to perform binary classification for all the noun phrases in the search space. The noun phrase classified to be an antecedent with highest confidence is selected as the antecedent. However, we propose in this paper that antecedent search is viewed as the problem of assigning the antecedent indicator labels to a sequence of noun phrases. In other words, sequence labeling is employed in antecedent search in the text. We are the first to suggest this idea. To perform sequence labeling, we suggest to use a structural SVM which receives a sequence of noun phrases as input and returns the sequence of labels as output. An output label takes one of two values: one indicating that the corresponding noun phrase is the antecedent and the other indicating that it is not. The structural SVM we used is based on the modified Pegasos algorithm which exploits a subgradient descent methodology used for optimization problems. To train and test our system we selected a set of Wikipedia texts and constructed the annotated corpus in which gold-standard answers are provided such as zero anaphors and their possible antecedents. Training examples are prepared using the annotated corpus and used to train the SVMs and test the system. For zero anaphor detection, sentences are parsed by a syntactic analyzer and subject or object cases omitted are identified. Thus performance of our system is dependent on that of the syntactic analyzer, which is a limitation of our system. When an antecedent is not found in the text, our system tries to use the title to restore the zero anaphor. This is based on binary classification using the regular SVM. The experiment showed that our system's performance is F1 = 68.58%. This means that state-of-the-art system can be developed with our technique. It is expected that future work that enables the system to utilize semantic information can lead to a significant performance improvement.