• Title/Summary/Keyword: Train Voltage Condition

Search Result 27, Processing Time 0.029 seconds

Estimation of Maximum Load Capacity at Interconnection Line of High-Speed and Conventional Line (기존선-고속선 연결선 구간에서 최대부하용량 평가)

  • Lee, Chang-Mu;Lee, Han-Min;Oh, Seo-Chan;Kim, Gil-Dong;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1069-1070
    • /
    • 2008
  • At the coupling area linking high speed line and conventional line, according to distance between trains due to speed limit of conventional line, the power load of substation supplying to this conventional line increase. At the coupling area between Kimcheon SS and Kyoungsan SS, train operation have problems caused by instantaneous voltage drop. So, this paper propose evaluation method of maximum load capacity at current normal feeding condition.

  • PDF

Research on artificial intelligence based battery analysis and evaluation methods using electric vehicle operation data (전기 차 운행 데이터를 활용한 인공지능 기반의 배터리 분석 및 평가 방법 연구)

  • SeungMo Hong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.385-391
    • /
    • 2023
  • As the use of electric vehicles has increased to minimize carbon emissions, the analyzing the state and performance of lithium-ion batteries that is instrumental in electric vehicles have been important. Comprehensive analysis using not only the voltage, current and temperature of the battery pack, which can affect the condition and performance of the battery, but also the driving data and charging pattern data of the electric vehicle is required. Therefore, a thorough analysis is imperative, utilizing electric vehicle operation data, charging pattern data, as well as battery pack voltage, current, and temperature data, which collectively influence the condition and performance of the battery. Therefore, collection and preprocessing of battery data collected from electric vehicles, collection and preprocessing of data on driver driving habits in addition to simple battery data, detailed design and modification of artificial intelligence algorithm based on the analyzed influencing factors, and A battery analysis and evaluation model was designed. In this paper, we gathered operational data and battery data from real-time electric buses. These data sets were then utilized to train a Random Forest algorithm. Furthermore, a comprehensive assessment of battery status, operation, and charging patterns was conducted using the explainable Artificial Intelligence (XAI) algorithm. The study identified crucial influencing factors on battery status, including rapid acceleration, rapid deceleration, sudden stops in driving patterns, the number of drives per day in the charging and discharging pattern, daily accumulated Depth of Discharge (DOD), cell voltage differences during discharge, maximum cell temperature, and minimum cell temperature. These factors were confirmed to significantly impact the battery condition. Based on the identified influencing factors, a battery analysis and evaluation model was designed and assessed using the Random Forest algorithm. The results contribute to the understanding of battery health and lay the foundation for effective battery management in electric vehicles.

A Study on the Method of preventing from Reduction of AF Track Circuit Signal Current on a Ferroconcrete Roadbed (철근콘크리트 도상에서 AF 궤도회로 신호전류 저감방지대책에 관한 연구)

  • Hong, Hyo-Sik;Yoo, Kwang-Kiun;Rho, Sung-Chan
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.500-503
    • /
    • 2010
  • Until now, the track circuit with railroad which is a part of an electrical circuit wad used only for the detection of the train location, but as train speed is up to be higher, in order to overcome the limits of ground signal system the railway signal system has changed from the ground signal system to a cab signal system. The power source of the track circuit has also changed from a direct current or a high voltage impulse to an alternating current with high frequency which is a part of the audio frequency. To improve the maintenanability and according to the environment condition, the railway roadbed is rapidly changed to the ferroconcrete roadbed. In case of a track circuit to use an alternating current with high frequency as power source at a ferroconcrete roadbed, the characteristic of the track circuit is brought on a change from a loss of the magnetic combination instead of a leakage current from electric insulation which was caused by the reinforcing iron pod with lattice shape for durability. This paper is shown the influence and the loss of the signal current at AF track circuit on a ferroconcrete in the simulation sheets and presented a proposal for the preventive method from reduction of signal current.

A Study on the Overcurrent Relay Modeling and Protective Coordination for Overload in Domestic AC Electrical Railway System (국내 교류 전기철도 급전계통 보호용 과전류 계전기 모델링 및 과부하 보호 협조에 관한 연구)

  • Kim, Hyun-Dong;Cho, Gyu-Jung;Huh, Seung-Hoon;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1121-1127
    • /
    • 2016
  • In this paper, modeling of overcurrent relay(OCR) to protect domestic AC electric railway Auto Transformer(AT) feeding system and operation characteristic analysis on overload condition are described. The target system of this paper is actual site where overload trip of circuit breaker occurs frequently. Because this AT feeding system is made of parallel single track which had a load(electric train) respectively, and is connected with only T phase of Scott Transformer. In addition, this system has been feeding 66kV voltage by KEPCO, not 154kV. We focus on protective coordination of Scott Transformer primary side and secondary side OCR for Korea single track AC electrical railway system in operation currently. We modeled single track AT feeding system and OCR. Also we performed faults and overload analysis for verification of OCR's setting values and system modeling. To analyze above mentioned research, we used PSCAD/EMTDC software tool.

Bead Visualization Using Spline Algorithm (스플라인 알고리즘을 이용한 비드 가시화)

  • Koo, Chang-Dae;Yang, Hyeong-Seok;Kim, Maeng-Nam
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.54-58
    • /
    • 2016
  • In this research paper, suggest method of generate same bead as an actual measurement data in virtual welding conditions, exploit morphology information of the bead that acquired through robot welding. It has many multiple risk factors to Beginners welding training, by we make possible to train welding in virtual reality, we can reduce welding training risk and welding material to exploit bead visualization algorithm that we suggest so it will be expected to achieve educational, environmental and economical effect. The proposed method is acquire data to each case performing robot welding by set the voltage, current, working angle, process angle, speed and arc length of welding condition value. As Welding condition value is most important thing in decide bead form, we would selected one of baseline each item and then acquired metal followed another factors change. Welding type is FCAW, SMAW and TIG. When welding trainee perform the training, it's difficult to save all of changed information into database likewise working angle, process angle, speed and arc length. So not saving data into database are applying the method to infer the form of bead using a neural network algorithm. The way of bead's visualization is applying the spline algorithm. To accurately represent Morphological information of the bead, requires much of morphological information, so it can occur problem to save into database that is why we using the spline algorithm. By applying the spline algorithm, it can make simplified data and generate accurate bead shape. Through the research paper, the shape of bead generated by the virtual reality was able to improve the accuracy when compared using the form of bead generated by the robot welding to using the morphological information of the bead generated through the robot welding. By express the accurate shape of bead and so can reduce the difference of the actual welding training and virtual welding, it was confirmed that it can be performed safety and high effective virtual welding education.

Analysis and Improvement of System Efficiency for the Moving-actuator type Bi-Ventricular Assist Device ($AnyHeart^{TM}$) (한국형 양심실 보조 인공 심장의 효율 분석 및 개선에 관한 연구)

  • Chung, J.H.;Nam, K.W.;Choi, S.W.;Lee, J.J.;Park, C.Y.;Kim, W.E.;Choi, J.S.;Min, B.G.
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.5
    • /
    • pp.449-458
    • /
    • 2001
  • This is a test report of system efficiency for the moving-actuator type Bi-ventricular assist device (AnyHear $t^{MT}$ ) Seoul National University). $AnyHeart^{TM}$), as an energy converter. utilities a brushless DC motor(S/M 566-26A. Sierracin/ Magnedyne, Carlsbad, CA. U.S.A.) generating their pendulous motion in the epicyclic gear train. It is necessary to know about the overall efficiency of the system. The system is subdivided into three parts: motor part, actuator part and blood sac part (including valves, etc.) according to system mechanism. The motor was operated with a variable range of torque. angular speed and width of voltage Pulse In this report. $AnyHeart^{TM}$ is focused on the efficiency of the motor and actuator parts. 4 $\ell/min$ pump output. which is normal condition of $AnyHeart^{TM}$ system, the total system efficiency is 8%, which is composed of 50%, 85% and 17% efficiency (motor Part, actuator Part and blood sac Part) respectively. In the analyzed result. applied input voltage on normal condition of $AnyHeart^{TM}$ is determined. Also speed Profile with considering filling state of blood sac is Provided. In the test of the in vitro mock circulation. some experimental results are Provided to demonstrate the effectiveness of the Presented approach.

  • PDF

A Study on the Optimization for a V-groove GMA Welding Process Using a Dual Response Method (듀얼 반응표면법을 이용한 V-그루브 GMA 용접공정 최적화에 관한 연구)

  • Park, Hyoung-Jin;Ahn, Seung-Ho;Kang, Mun-Jin;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.26 no.2
    • /
    • pp.85-91
    • /
    • 2008
  • In general, the quality of a welding process tends to vary with depending on the work environment or external disturbances. Hence, in order to achieve the desirable quality of welding, we should have the optimal welding condition that is not significantly affected by these changes in the environment or external disturbances. In this study, we used a dual response surface method in consideration of both the mean output variables and the standard deviation in order to optimize the V-groove arc welding process. The input variables for GMA welding process with the dual response surface are welding voltage, welding current and welding speed. The output variables are the welding quality function using the shape factor of bead geometry. First, we performed welding experiment on the interested area according to the central composite design. From the results obtained, we derived the regression model on the mean and standard deviation between the input and output variables of the welding process and then obtained the dual response surface. Finally, using the grid search method, we obtained the input variables that minimize the object function which led to the optimal V-groove arc welding process.