• Title/Summary/Keyword: Train Noise

Search Result 766, Processing Time 0.028 seconds

Vibration sources and its countermeasures of high speed electric trains for subway (지하철용 고속전동차의 진동원 및 개선대책)

  • Park, Ki-Soo;Choi, Yeon-Sun
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.244-250
    • /
    • 2007
  • The electric train in the first line subway runs faster in the block from Suwon to Cheonan than the general block. The faster run results in the deterioration of ride quality due to the increase of noise and vibration. To reduce the noise and vibration of the electric train, a running test of the electric train was performed in the block from Suwon to Cheonan. The experimental results show that the sources of the noise and vibration basically comes from the irregularity of the railroad track and the connection part between car body and bogie. The possible countermeasure of the high speed electric train can be the reinforcement of the center pivot to have more flexibility and the frequent maintenance of electric train.

  • PDF

Analysis of the Effect of Wind on the Dynamic Behavior of High Speed Train (바람이 고속전철의 동적 안전성에 미치는 영향 분석)

  • 김영국;박찬경;박태원;배대성
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.349-356
    • /
    • 2001
  • The dynamic behavior of high speed train is very Important because the railway should be safe and Is satisfied tilth the rode comfort of passengers. The train is composed of many suspension components. such as 1st springs, 1st dampers, 2nd springs and 2nd dampers, that have an influence on the dynamic characteristics of high speed train. Also, the wheel/rail shapes, the track conditions and geometry and many environmental factors, such as rain, snow and wind. affect the dynamic behavior of high speed train. This paper reviews the effect of wind and track conditions on the dynamic behavior of high speed train. The VAMPIRE program Is used for this simulation. The result of simulation shows that the high speed train should not be operated when the wind velocity is beyond 34.5 m/sec.

  • PDF

Tunnel Sonic Boom Analysis using monopole source modeling (홀극음원 모델링을 이용한 고속전철 터널 충격성 소음해석)

  • Jung W.T.;Yoon T.S.;Lee S.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.427-432
    • /
    • 1999
  • When a high-speed train enters a tunnel, a compression wave is generated. This wave subsequently emerges from the exit portal of the tunnel, which causes an impulsive noise called 'Sonic boom' or 'micro-pressure wave'. In the present study, new method is presented for prediction of sonic boom noise, especially focusing on the effect of the nose shape of the train on the resultant noise. Acoustic theory for monopole source is used to represent a nose shape of the train in wave equation. Compression wave propagation in tunnel considering tunnel track condition and emission of sonic boom was calculated. The predicted compression waves and impulsive sound waves are compared with recent measurements, and show reasonable agreements.

  • PDF

Analysis of Interior Noise of High Speed EMU by using SEA (동력 분산형 고속철도 차량의 실내소음 해석 : SEA 응용)

  • Kim, Tae-Min;Kim, Jeung-Tae;KIm, Jung-Soo
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.970-978
    • /
    • 2010
  • In this study, interior noise of the high speed EMU was estimated by statistical energy analysis (SEA) method. Based on the data measured at a distance of 25m from a running train, exterior noise of the running train was calculated. And then it was designed as noise sources in VA ONE, a commercial software of SEA. coupling and damping loss factor of high speed EMU studied in previous studies is used. The interior noise of the train was estimated for a open-land section. The analysis of interior noise of HST in the tunnel section will be estimated through same method.

  • PDF

Experimental Analysis of Wheel Radiation Noise of HANVIT 200 Train in Curve Lines (곡선부에서의 한빛 200 열차 차륜방사 소음 특성)

  • Lee, Chan-Woo;Kim, Jae-Chul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.907-910
    • /
    • 2008
  • The wheel radiation noise characteristic of Korean tilting train(Hanvit 200) on curved rail under the field test conditions is analyzed in this paper. The test railroad track was selected from Seodaejon to Songjeongri in Honam line. $5^{th}$ and $6^{th}$ car are decided to measure radiation noise level among a train of six cars. The test subject curve radius executed from R400, R500, R600, R700 and R800 segments. The speed of test trains when from R600 and R800 curves existing operation speed and speed up 20% of existing speed. On curved rail at the time of operation speed of Hanvit 200 trains from below 95km/h wheel radiation noise level at $94dBA{\sim}99dBA$, the operation speed from between $100km/h{\sim}144km/h$ wheel radiation noise level at $100dBA{\sim}106dBA$.

  • PDF

Designing a Microphone Array System for Noise Measurements on High-Speed Trains (고속철도 차량의 소음 측정을 위한 마이크로폰 어레이 설계에 관한 연구)

  • No, Hui-Min;Choe, Seong-Hun;Hong, Seok-Yun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.717-722
    • /
    • 2011
  • In this paper, noise source localization of the Korean high speed train was conducted by using delay and sum beam-forming method of a microphone array. At first, the microphone array having irregular configuration was designed and the resolution of which was analyzed from parameters such as 3-dB bandwidth and maximum side-lobe level. After the demonstration, the microphone array was applied on the high speed train and noise localization of the high speed train driving at 300 km/h was performed successfully.

  • PDF

Investigation of the Bridge Vibration and Noise under Passage of the Light Rail Train (경량전철 교량 상부구조의 주행열차하중에 의한 진동 및 소음 분석)

  • Kim, Sung-Il;Yeo, In-Ho;Rhee, In-Kyu;Kim, Sung-Choon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.522-529
    • /
    • 2006
  • Running train is one of the most main factor for railway bridge vibration. The repeated forces with equidistant axles cause the magnification of dynamic responses which relates with maintenance of the track structure and structure-borne noises. The noise problem is one of the most important issues in services of light rail transit system which usually passes through towns. The noise of railway bridges can be divided into the noise from track-vehicle system and structure-borne noises. In the present study, The vibration and noise of the LRT bridge will be investigated with utilizing dynamics responses from moving train as input data for noise analysis.

  • PDF

A Study on the Increase of Transmission Loss of Metro Train (도시철도 차량의 차음향상에 관한 연구)

  • Choi, Yong-Woon;Koo, Jeong-Seo;You, Won-Hee;Koh, Hyo-In
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.257-262
    • /
    • 2010
  • Lower tunnels and concrete based tracks are introduced to newly constructed metro lines to reduce the construction and track maintenance fees. But such a lower tunnel together with concrete based track causes higher interior noise of metro trains. It is required that the trains should not only be a transportation media but also be comfortable. So, to lower the metro train's interior noise level, design was made to increase the transmission loss per sectional part. Through such a design, it is expected that about 7 dB(A) of noise level will be reduced compared to that of the conventional train.

The Noise Effect of a Skirt on Rolling-stock (고속철도 차량의 스커트 장착에 의한 실내.외 소음 영향 분석)

  • Kim, Tae-Min;Kim, Jeung-Tae;Kim, Jung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.499-504
    • /
    • 2012
  • The high-speed train enjoys widespread acceptance as environment-friendly means of medium- to long-distance transportation. The pursuit of higher speed and lighter weight in railroad vehicles has engendered higher noise level. In particular, the environmental noise places many restrictions in the operation of high-speed railroad vehicles. This research investigates the effect of installing a skirt onto a high-speed train bogie with the top speed of 400 km/hr and using High Speed EMU for the purpose of reducing the environmental noise. In order to analyze the effect of the interior noise and environmental noise due to installation of the skirt, sound level is calculated using the Ray method and Statical Energy Analysis method. The numerical calculation predicts a reduction of approximately 2 dB in the environmental noise level, but at the cost of increase of approximately 2.5 dB in the interior noise level of the vehicle.

  • PDF