• Title/Summary/Keyword: Train Navigation

Search Result 67, Processing Time 0.023 seconds

Integrated Navigation Filter Design for Trains Considering the Mounting Misalignment Error of the IMU

  • Chae, Myeong Seok;Cho, Seong Yun;Shin, Kyung Ho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.3
    • /
    • pp.179-187
    • /
    • 2021
  • To estimate the location of the train, we consider an integrated navigation system that combines Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS). This system provides accurate navigation results in open sky by combining only the advantages of both systems. However, since measurement update cannot be performed in GNSS signal blocked areas such as tunnels, mountain, and urban areas, pure INS is used. The error of navigation information increases in this area. In order to reduce this problem, the train's Non-Holonomic Constraints (NHC) information can be used. Therefore, we deal with the INS/GNSS/NHC integrated navigation system in this paper. However, in the process of installing the navigation system on the train, a Mounting Misalignment Error of the IMU (MMEI) inevitably occurs. In this case, if the NHC is used without correcting the error, the navigation error becomes even larger. To solve this problem, a method of easily estimating the MMEI without an external device is introduced. The navigation filter is designed using the Extended Kalman Filter (EKF) by considering the MMEI. It is assumed that there is no vertical misalignment error, so only the horizontal misalignment error is considered. The performance of the integrated navigation system according to the presence or absence of the MMEI and the estimation performance of the MMEI according to the method of using NHC information are analyzed based on simulation. As a result, it is confirmed that the MMEI is accurately estimated by using the NHC information together with the GNSS information, and the performance and reliability of the integrated navigation system are improved.

Development of a Real Trajectory-based Simulator to Verify the Reliability of the Integrated Navigation System for Trains (열차용 복합 항법 시스템 신뢰성 검증을 위한 실 궤적 기반 시뮬레이터 개발)

  • Chae, Myeong-Seok;Cho, Seong-Yun;Shin, Kyung-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.135-144
    • /
    • 2021
  • In railway systems, it is common to obtain train location information through an infrastructure-based train detection system. However, this system has a problem that may provide incorrect location information due to non-detection and erroneous detection, which may cause an accident. Therefore, in this study, we propose a method of providing train location information using a sensor-based integrated navigation system. In order to provide accurate information; however, the reliability of the integrated navigation system must be verified. Therefore, in this paper, we develop a simulator that can generate a reference trajectory and sensor data based on the real trajectory and analyze the performance of the integrated navigation system according to various scenarios on the real trajectory.

Performance Improvement of VHF Train Radio Transmitter by Using Vibration-Proof Pads (방진패드를 이용한 VHF 열차무선 송신기 특성 개선)

  • Kim, Sung-Dong;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.4
    • /
    • pp.475-481
    • /
    • 2009
  • This paper focuses the performance improvement of the train radio system (TRS) supporting the safe and accurate operations. The causes of troubles and the performance drift in TRS have been analyzed and measurement indexes have been selected. Frequency shifts of transmitters causing from train vibrations have been shown, and the improvement of frequency stability has been confirmed by use of vibration- proof pads.

  • PDF

The study on scheme for train position detection based on GPS/DR (GPS/DR기반의 차상열차위치검지방안 연구)

  • Shin, Kyung-Ho;Joung, Eui-Jin;Lee, Jun-Ho
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.802-810
    • /
    • 2006
  • For a thorough train control, the precise train position detection is necessarily required. The widely used current way for train position detection is the one of using track circuits. The track circuit has a simple structure, and has a high level of reliability. However trains can be detected only on track circuits, which have to be installed on all ground sections, and much amount of cost for its installation and maintenance is needed. In addition, for the track circuit, only discontinuous position detection is possible because of the features of the closed circuit loop configuration. As the recent advances in telecommunication technologies and high-tech vehicle-based control equipments, for the train position detection, the method to detect positions directly from on trains is being studied. Vehicle-based position detection method is to estimate train positions, speed, timing data continuously, and to use them as the control information. In this paper, the features of GPS navigation and DR navigation are analyzed, and the navigation filters are designed by constructing vehicle-based train position detection method by combining GPS navigation and DR navigation for their complementary cooperation, and by using kalman filter. The position estimation performance of the proposed method is also confirmed by simulations.

  • PDF

A Study on the Dynamic Characteristics of Polydyne cam Valve Train (폴리다인 캠 밸브 트레인의 동적 특성에 관한 연구)

  • You, Hwan-Shin;Chun, Dong-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.3
    • /
    • pp.441-448
    • /
    • 2011
  • It is very important that establishing the valve train equations and representing the behavior of the valve train parts. To maintain the specific efficiency of running engine, the cam profile of valve train has more specific influence on the adequate behavior of the valve train than a valve clearance, heat-resistance and durability of parts. The polynomial cam, the multipol cam and polydyne cam profie are widely used to represent cam behaviour. In this study, using polydyne cam design profile equations which is more adequate for representing high speed engine, the geometrical modeling and mathmatical variable analysis are established to analysis the valve behaviour.

Safety analysis to derive safety requirement in the railway system

  • Joung, Eui-Jin;Shin, Kyung-Ho;Kim, Yong-Gyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.383-386
    • /
    • 2006
  • The safety of the railway system is important because the system is a mass transit system and the results of the accident are inconceivable. The railway system is operated by train operation system such as train control system. So the train control system requires safety critical characteristics. In the European railway, ETCS (European Train Control System) project has been finished to accomplish the interoperability of each national railway signaling system. According to the interoperability degree, ETCS levels are suggested. As the highest level, ETCS level 3 suggests a radio communication. Also recently urban railway system is operated by driverless and automatic train control system. In this circumstance, more safety is required than before in the railway system. In order to accomplish the safety of a system, the requirements considering safety have to be suggested. The requirement is a set of several functions such as general function, environment, safety etc. For the safety critical system, safety function is more important than any other functions. The safety functions are deduced by safety analysis. In order to perform the safety analysis, the system hazards have to be identified and then risk analysis for each hazard should be performed. The risk is related to the frequency and the severity of each hazard. And then countermeasures for each risk have to be prepared. The summary of the countermeasures is about a kind of safety functions in a system. In this paper, the safety functions for a train control system are presented according to the above procedure.

  • PDF

Distributed UORA Scheme for Autonomous Train Communication in Congested Environment (자율주행 열차의 혼잡 상황 통신을 위한 분산형 UORA 기법)

  • Ahn, Woojin;Kim, Ronny Yongho
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.542-547
    • /
    • 2019
  • Autonomous train is investigated to increase the capacity of railroad, and the reliability of wireless communication plays a critical role in terms of decreasing the inter-train distance. In this paper, we propose a transmission scheme for autonomous train communication in highly congested environment. The proposed scheme, namely distributed uplink orthogonal frequency division multiple access (OFDMA) random access (UORA), applies the triggered uplink access (TUA) and the UORA, introduced in the sixth generation WLAN standard, IEEE 802.11ax, for communication devices on vehicle and platform in a distributed manner. The simulation results show that the proposed scheme efficiently improves the packet transmission success rate in highly congested channel conditions compared to the conventional enhanced distributed channel access (EDCA) transmission scheme.

Technical Implication of an Intermodal Transport System for Implementation between Korea and China - On a train ferry system for Incheon harbor - (한·중 복합수송 시스템 도입을 위한 기술적 시사점 - 인천항 중심의 열차페리 시스템에 대하여 -)

  • Ko, Jung-O;Seo, Dae-Won;Lee, Seung-Hee
    • Journal of Navigation and Port Research
    • /
    • v.36 no.8
    • /
    • pp.683-689
    • /
    • 2012
  • The logistics industry is growing rapidly with China's economic development in recent years. Particularly, the intermodal freight system is becoming the main issue to reduce the logistic costs under the situation that the quantity of cargo transported between Korea and China is continuously increasing. Shift from road transportation to eco-friendly modes such as rail and coastwise shipping is also increasing. The present study suggests technical aspects related to the implementation of intermodal transport system centered on train ferries between two countries with already employed Chinese infrastructure into consideration. Technical assessment of intermodal train ferry system entails not only the vessels but supporting facilities and technologies as well. Port and rail facilities and operating skills for efficient modal shifting, and their standardization is indispensible to the realization of an intermodal train ferry system between the two countries.

A Visibility Analysis of GNSS for the Railway Application (위성항법기술의 철도적용을 위한 가시성 분석 연구)

  • Shin, Kyung-Ho;Lee, Jun-Ho;Kim, Young-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.190-192
    • /
    • 2008
  • GNSS(Global navigation Satellite system) is the system which determines the users' position using the navigation satellites. The position determination using GNSS has to be always Possible to appling GNSS to railway system widely. Especially, to apply GNSS to the safety-critical application, such as train control system, the satellite's visibility has to be always secured. This study describes the necessity of visibility analysis and the method. And also the visibility analysis of the stand-alone GNSS and the integration GNSS are performed and the applicability of GNSS for train control application is analysed.

  • PDF

Simulator Design for Bimodal Tram (바이모달트램을 위한 시뮬레이터 설계)

  • Byun, Yeun-Sub;Mok, Jei-Kyun;Yun, Kyoung-Han;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.450-451
    • /
    • 2008
  • The Bimodal tram is developed in KRRI (Korea Railroad Research Institute). This vehicle will be used in the public transportation system. The Bimodal tram has the advantages of both bus and train. Bus system has the advantages of flexibility of the routes delivering passengers to the destination and easy accessibility. Train is to meet the scheduled arrival and massive public transportations. The vehicle is the rubber tired tram and is all wheel steered single articulation. The vehicle can be automatically operated by navigation control system (NCS). For the automatic driving, the vehicle lanes will be marked with permanent magnets that are buried in the road. The control algorithm developed for navigation control has to be verified before being applied in the vehicle. In this purpose, we design the simulator for controller test of the bimodal tram.

  • PDF