• Title/Summary/Keyword: Train Generation

Search Result 327, Processing Time 0.037 seconds

Operation Characteristics Investigation of the Next Generation High Speed Railway System with respect to IPMSM Parameter Variation (IPMSM 파라미터 변동에 따른 차세대 고속전철 시스템의 운전 특성 고찰)

  • Park, Dong-Kyu;Suh, Yong-Hun;Lee, Sang-Hyun;Jin, Kang-Hwan;Kim, Yoon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3133-3141
    • /
    • 2011
  • The next generation domestic high speed railway system is a power distributed type and uses vector control method for motor speed control. Nowadays, inverter driven induction motor system is widely used. However, recently PMSM drives are deeply considered as a alternative candidate instead of an induction motor drive system due to their advantages in efficiency, noise reduction and maintenance. The next-generation high speed train is composed of 2 converter units, 4 inverter units, and 4 Traction Motor units. Each motor is connected to the inverter directly. In this paper, the effect of IPMSM parameter variations to the system operation characteristics of the multi inverter drive high speed train system are investigated. The parallel connected inverter input-output characteristics are analyzed to the parameter mismatches of IPMSM using the 1C1M control simulator based on Matlab/Simulink.

  • PDF

Development of Verification and Conformance Test Generation of Communication Protocol for Railway Signaling Systems

  • Lee, Jae-Ho;Hwang, Jong-Gyu;Seo, Mi-Seon;Kim, Sung-Un;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.358-362
    • /
    • 2004
  • Verification and testing are complementary techniques that are used to increase the level of confidence in the correct functioning of communication systems as prescribed by their specifications. This paper presents an experience of model checking for a formal railway signaling protocol specified in LTS (Labeled Transition System). This formal approach checks deadlock, livelock and reachability for the state and action to verify whether properties expressed in modal logic are true on specifications. We also propose a formal method for semi-automated test case generation for a railway signaling protocol described in I/O FSM (Input/Output Finite State Machine). This enables the generation of more complete and consistent test sequence for conformance testing. The above functions are implemented by C++ language and included within RSPVTE (Railway Signaling Protocol Verification and Testing Environment).

  • PDF

Development and Application of Computer Aided Systems Engineering Processes for Next Generation High Speed Railway Train (차세대 고속전철시스템 개발을 위한 시스템 엔지니어링 체계구축)

  • Yoo Il Sang;Park Young Won
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.51-56
    • /
    • 2002
  • A Korea next-generation high-speed rail system represents a typical example of large- scale multi-disciplinary systems, consisting of subsystems such as train, electrical hardware, electronics, control, Information, communication, civil technology etc. The system design and acquisition data of the large-scale system must be the subject under strict configuration control and management. The system therefore, must be developed using systems engineering that is a efficient and effective methodology to design such a complex system and manage its development. This paper presents the results from a computer-aided systems engineering application to the Korea next generation high-speed railway project. Especially, the focus of the study was on requirement management and PBS management.

  • PDF

Synthetic Image Generation for Military Vehicle Detection (군용물체탐지 연구를 위한 가상 이미지 데이터 생성)

  • Se-Yoon Oh;Hunmin Yang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.392-399
    • /
    • 2023
  • This research paper investigates the effectiveness of using computer graphics(CG) based synthetic data for deep learning in military vehicle detection. In particular, we explore the use of synthetic image generation techniques to train deep neural networks for object detection tasks. Our approach involves the generation of a large dataset of synthetic images of military vehicles, which is then used to train a deep learning model. The resulting model is then evaluated on real-world images to measure its effectiveness. Our experimental results show that synthetic training data alone can achieve effective results in object detection. Our findings demonstrate the potential of CG-based synthetic data for deep learning and suggest its value as a tool for training models in a variety of applications, including military vehicle detection.

A Study on Design of Safety Transmission Unit for Next-Generation Train Control System (차세대 열차제어시스템 안전전송장치 설계에 관한 연구)

  • Tae-Woon Jung;Ho-Cheol Choo;Chae-Joo Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.563-570
    • /
    • 2023
  • The Safety Transmission Unit(STU) is a critical device used in railway systems to ensure safe and efficient operations by providing communication between trains and railway infrastructure. It is responsible for transmitting vital information and commands, allowing for the control and coordination of train movements. The STU plays a crucial role in maintaining the safety of passengers, crew, and the overall railway network. This paper presents the design and testing of a STU for the next-generation wireless-based train control system. An analysis of european and domestic standards was conducted to review requirements and ensure the design of a STU for the train control system meets international standards. Based on this analysis, hardware and software designs were developed to create an internationally recognized level of safety for the communication device. To verify the functionality of the STU, a simulator was developed, and it was confirmed that the designed features were successfully implemented.

The Development of Simulator for Integrated Onboard Signalling System(IOSS) (통합 차상신호장치 테스트용 시뮬레이터 개발)

  • Kim, Seok-Heon;Han, Jae-Mun;Park, Tan-Se;Cho, Yong-Gee
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.363-367
    • /
    • 2011
  • In this paper a simulator for Integrated Onboard Signalling System(IOSS) will be presented and illustrated. IOSS which is integrated with there signalling systems such as ERTMS/ETCS Level 1 ATP(Automatic Train Protection), ATC(Automatic Train Control) and ATS(Automatic Train Stop) is a signalling system for HEMU-400X(Highspeed Electric Multiple Unit - 400km/h eXperiment). HEMU-400X is under development as the next generation high-speed train in Korea. Before conducting a trial run of HEMU-400X with IOSS, we must carry out functional test of IOSS. The simulator is suggested in this paper for testing and verification of IOSS. The simulator can help to test all function of IOSS although a real train and trackside equipments are not existed. Also the simulator can make a fault in trackside equipment intentionally. In that scenario, we can figure out how IOSS handle emergency situations.

  • PDF

Numerical study of Three-Dimensional Characteristics of Flow Field and Compression Wave Induced by High Speed Train Entering into a Tunnel (터널에 진입하는 고속전철에 의한 3차원 점성유동과 압축파 특성에 관한 수치해석적 연구)

  • Shin C. H.;Park W. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.91-98
    • /
    • 2000
  • The three-dimensional unsteady compressible Full Navier-Stokes equation solver with sliding multi-block method has been applied to analyze three dimensional characteristics of the flow field and compression wave around the high speed train which Is entering into a tunnel. The numerical scheme of AF + ADI was used to efficiently solve Navier-Stokes equations in the curvilinear coordinate system. The vortex formation around the nose region was found and the generation of compression wave due to the blockage effects was observed ahead of the train in the form of plane wave. The three dimensional characteristics of the flow field compared to the analytic results were discussed in detail. The variation of pressure of tunnel wall surface and velocity profile of the train are identified as the train enters into a tunnel. The changes in aerodynamic forces and streamlines of each specific sections are also discussed and presented.

  • PDF

Real-time Simulation for Dynamic Characteristics of Mechanical Braking of the Korean Tilting Train (한국형 틸팅열차의 기계적 제동 동특성에 대한 실시간 시뮬레이션)

  • Kim, Ho-Yeon;Kang, Chul-Goo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1294-1299
    • /
    • 2009
  • The Korean tilting train called Hanvit 200 was launched recently in Korea to improve train speed up to 200 km/h at conventional lines. In this paper, we propose a HILS system for simulations of mechanical braking of the Hanvit 200 train using actual ASCU, actual dump valves, Simulink, dSPACE board, and ControlDesk software. In the proposed HILS system, dynamics of wheelsets, bogies and car body, brake force generation, creep force generations are realized via mathematical models, and anti-skid logic is realized using actual components. The validity of the proposed HILS system is demonstrated via comparing results of real-time and off-line simulations.

A study of a equipment, generation and managing train track data for train control system (열차제어시스템의 선로정보 생성관리장치 연구)

  • Yoon, Yongl-Ki;Kim, Yong-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1018-1020
    • /
    • 2008
  • Since radio communications based train control system requires considerable amount of information than track circuits based signalling system and these information have significant effects on train control system safety, it is essential to ensure information integrity. In addition, when track information has to be added or changed due to track installation, track maintenance (both corrective and preventive), any information changes must be reported to train control system as soon as possible. In this paper, we provide explanation on the equipment and its data structure. Also, we represent the results of a simulator application to check the information integrity generated by the equipment.

  • PDF

Study on the Design Method for the Train Nose Shape Using the Configuration Function (형상함수를 이용한 열차 전두부 설계기법 연구)

  • Ku, Yo-Cheon;Rho, Joo-Hyun;Yun, Su-Hwan;Kwak, Min-Ho;Lee, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2218-2223
    • /
    • 2008
  • A nose shape is strongly related with the aerodynamic performances of train. Therefore shape definition and aerodynamic performance analysis are important for train nose shape design. In this study, a new design method was suggested for train nose shape design by configuration function. To this end, the nose shape was classified by box type and each box shape is defined. After that the 3-D shape of train was defined as several mathematical functions by combination of each box shape. Also it was shown that the wind shield of driver's seat and complex curves of surface can be expressed using superposition of functions. This methodology can be used for grid generation of numerical analysis, and applied to aerodynamic optimization design of nose shape.

  • PDF