• Title/Summary/Keyword: Train Communication Network(TCN)

Search Result 29, Processing Time 0.031 seconds

Double mastering network for train communication (철도 차량용 통신 네트워트의 이중 마스터 운용 기법)

  • Ryou, Heung-Reol;Cho, Young-Jo;Oh, Sang-Rok;Hong, Dae-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.355-358
    • /
    • 1998
  • Train control and monitoring system for the railway train requires a reliable real-time communication network. The system have various functions, diagnostics, passenger informations, and fault-tolerant controls. For this system, an international standard called TCN(Train Communication Network) is proposed by IEC and the train industries. The TCN is composed of two layers, wire train bus(WTB) and multifunction vehicle bus(MVB). This paper evaluates the performance of the proposed WTB and modified WTB. And computer simulations are performed. The evaluated results can be used for the fault tolerant network in the railway train system.

  • PDF

A Simulator for the Performance Evaluation of the FieldBus(Train Communication Network)

  • Han, Seong-Ho;Lee, Su-Gil;Koo, Dong-Hea;Song, Yong-Soo;Han, Young-Jae;Choi, Seong-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1745-1748
    • /
    • 2003
  • This paper presents a Train Communication Network simulator (TCNS) that can be used to evaluate the performance of TCN. TCN was accepted as the standard of the protocol for the communication network in trains. We carry out some simulation tests using the TCNS to show practical uses of the simulator. Results of some simulation tests are also reported

  • PDF

Optimization of TCN-Ethernet Topology for Distributed Control System in Railway Vehicles (다관절 차량의 분산형 제어 시스템을 위한 이더넷 기반 TCN 토폴로지 최적화)

  • Kim, Jungtai;Hwang, Hwanwoong;Lee, Kang-Won;Yun, Ji-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.38-45
    • /
    • 2016
  • For higher efficiency and reliability of railroad trains with many electronic sensors and actuators, a distributed control system with which electronic components communicate with each other in a distributed manner via a data network is considered. This paper considers Ethernet-based Train Communication Network (TCN) for this purpose and proposes a methodology to optimize the topology in terms of transmission latency and reliability, each of which is modeled as the number of traversing backbone nodes and the number of cables between vehicles, respectively. An objective function is derived accordingly and a closed-form optimum is obtained by relaxing the integer constraint of the number of vehicles for a unit network. Then, the final integer optimum is searched around it. Through numerical evaluation, the validity of the proposed methodology and the characteristics of the resulting solutions are shown.

New Database Table Design Program of Real Time Network for High Speed Train

  • Cho, Chang-Hee;Park, Min-Kook;Kwon, Soon-Man;Kim, Yong-Ju;Kim, Sung-Shin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2164-2168
    • /
    • 2003
  • Real time control system such as in factory automation fields, defense field, aerospace, railway industries, financial trading and so forth, includes multiple computers on multiple nodes, and share data to process various actions and functions. This is similar to multitasking in a multiprocessor computer system. The task processing efficiency of such system is proportionally increased by process speed of each process computer. And also it is greatly influenced by communication latencies of each node. To provide proper operation of such real time system, a network that can guarantee deterministic exchange of certain amount of data within a limited time is required. Such network is called as a real time network. As for modern distributed control system, the timeliness of data exchange gives important factor for the dynamics of entire control system. In a real time network system, exchanged data are determined by off-line design process to provide the timeliness of data. In other word, designer of network makes up a network data table that describes the specification of data exchanged between control equipments. And by this off-line design result, the network data are exchanged by predetermined schedule. First, this paper explains international standard real time network TCN (Train Communication Network) applied to the KHST (Korean High Speed Train) project. And then it explains the computer program developed for design tool of network data table of TCN.

  • PDF

International Standardization of Intelligent Broadband Communication of Train (철도차량 지능형 광대역 통신망의 국제표준화 동향)

  • Hwang, Hyeon-Chyeol;Lee, Ho-Yong;Cho, Bong-Kwang;Kwak, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1027-1034
    • /
    • 2011
  • Electronic devices in railway vehicle perform various functions such as not only braking and propulsion but also monitoring of vehicle condition, on-line diagnosis, and passenger information service, etc. These devices, distributed in vehicle, should be efficiently connected so as to properly perform the functions. IEC (International Electro-Technical Commission) standardized train communication network (TCN) as IEC 61375-1, -2. TCN can reduce the interconnecting work load by reducing the number of wire-line, compared with existing hard-wire connection, and it brings the efficient control by enabling various devices to share the information. But existing TCN can not satisfy the increasing service demands like passenger internet access and CCTV surveillance, etc. In this paper, we investigate ECN (Ethernet Consist Network) and ETN (Ethernet Train Backbone) which are proposed to satisfy these demands and in the process of standardization by IEC TC9 WG43.

  • PDF

A Study on the Performance Improvement of Message Transmission over MVB(Multifunction Vehicle Bus)

  • Choi, Myung-Ho;Park, Jae-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2198-2202
    • /
    • 2003
  • The data transmission of MVB(Multifunction Vehicle Bus) of TCN(Train Network Communication) is divided into the periodic transmission phase and the sporadic transmission phase. TCN standard defines the event-polling method for the message transfer in the sporadic phase. However, since the event-polling method does not use pre-scheduling to the priority of the messages to be transmitted, it is inefficient for the real-time systems. To schedule message transmission, a master node should know the priority of message to be transmitted by a slave node prior to the scheduling the sporadic phase, but the existing TCN standard does not support any protocol for this. This paper proposes the slave frame bit-stuffing algorithm, with which a master node gets the necessary information for transmission scheduling and includes the simulation results of the event-polling method and the proposed algorithm.

  • PDF

Implementation and simulation a slave module based on MVB of the TCN(IEC 61375-1) (TCN(IEC-61375-1)의 MVB 기반 슬레이브 컨트롤러 구현 및 시뮬레이션)

  • Sul, Jaeyoon;Kim, Seok-Heon;Park, Jaehyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.573-574
    • /
    • 2009
  • 열차 통신의 목적은 분산 제어 시스템에서 빠르고 정확한 데이터 교환에 있다. 이를 위하여 개발되고 1999년 IEC와 IEEE에 의해 국제 규격으로 승인된 TCN(Train Communication Network)은 차량간 통신 버스인 WTB(Wired Train Bus)와 차량내 통신 버스인 MVB(Multifunction Vehicle Bus)의 이중 계층 구조로 구성되며 TCN의 데이터 서비스는 프로세스 데이터, 메시지 데이터, 관리용 데이터의 세가지 데이터 서비스로 구분된다. MVB는 전송 가능한 데이터 서비스에 따라 디바이스의 클래스가 나눠지게 된다. 본 논문에서는 MVB에서 버스 마스터의 프레임에 따라 데이터를 보낼 수 있는 슬레이브 컨트롤러의 구성과 시뮬레이션을 통해 구현된 장치의 기능이 국제 표준의 제안사항들을 따르고 있는 지 증명한다.

Study on Fault Diagnosis Method of Train Communication Network applied to the prototype Korean High Speed Train (한국형 고속 전철에 적용된 열차 통신 네트워크의 고장 진단 기법에 관한 연구)

  • Cho, Chang-Hee;Park, Min-Kook;Kwon, Soon-Man;Kim, Yong-Ju;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1335-1337
    • /
    • 2003
  • 한국형 고속 전철 과제는 6년의 과제 기간을 가시는 국가 연구 사업으로, 한국 실정에 적합한 차세대 고속 전철을 시험 제작하여 운용하는 것이 목적이다. 시속 350 km/h의 운행 속도를 목표로 하는 한국형 고속 전철은 현재 개발이 완료되어, 시험 주행 트랙에서 증속을 위한 시험 운행을 계속하고 있다. 한국형 고속 전철은 열차 내 각종 제어 장치들 간의 데이터 교환를 위해서 실시간 네트워크인 열차통신 네트워크(Train Communication Network; TCN)를 사용한다. 약 10년간의 표준 보완 기간을 거쳐서 1999년 국제 표준으로 확정된 TCN(IEC61373)은 열차 전용의 실시간 통신 네트워크로 열차 장치의 제어 및 진단에 적합한 다양한 기능과 특징을 가지고 있다. 한국형 고속전철은 열차의 주 제어 및 감시를 담당하는 주관 제어장치(SCU, Supervisory Control Unit)와 열차 안전에 중요한 역할을 하는 자동 열차 제어 장치(ATC, Automatic Train Control)을 포함하는 55개의 제어 장치들이 TCN으로 연결되어서 상호간의 데이터 교환을 수행하도록 구성되어 있다. 본 논문에서는 한국형 고속전철에 사용될 TCN의 구조와 실제 필드에 사용되어지기 위해서 필수적으로 필요한 네트워크의 고장 진단 기법에 대해서 설명한다.

  • PDF

Experimental Verification of the Optimized TCN-Ethernet Topology in Autonomous Multi-articulated Vehicles (자율주행형 다관절 차량용 이더넷 TCN의 최적 토폴로지에 대한 실험적 검증)

  • Kim, Jungtai;Hwang, Hwanwoong;Lee, Kang-Won;Yun, Ji-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.106-113
    • /
    • 2017
  • In this paper, we propose a suitable network topology for the Ethernet based Train Communication Network (TCN) for control system in a autonomous multi-articulated vehicle. We propose a network topology considering the structural constraints such as the number of cables and ports, and the performance constraints such as network response time and maximum throughput. We compare the network performances of star topology and daisy chain topology as well as hybrid topology, which is proposed in previous studies and a compromise between daisy chain and star topology. Here, the appropriate number of nodes in a group is obtained for the configuration of the hybrid topology. We first derive estimates of the network performance through simulation with different topologies, and then, implement the network by connecting the actual devices with each network topology. The performance of each topology is measured using various network performance measurement programs and the superiority of the proposed topology is described through comparison.