• Title/Summary/Keyword: Trailing Vortex

Search Result 122, Processing Time 0.018 seconds

Reynolds Number Effects on Aerodynamic Characteristics of Compressor Cascades for High Altitude Long Endurance Aircraft

  • Kodama, Taiki;Watanabe, Toshinori;Himeno, Takehiro;Uzawa, Seiji
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.195-201
    • /
    • 2008
  • In the jet engines on the aircrafts cruising at high altitude over 20 km and subsonic speed, the Reynolds number in terms of the compressor blades becomes very low. In such an operating condition with low Reynolds number, it is widely reported that total pressure loss of the air flow through the compressor cascades increases dramatically due to separation of the boundary layer and the secondary-flow. But the detail of flow mechanisms causes the total pressure loss has not been fully understood yet. In the present study, two series of numerical investigations were conducted to study the effects of Reynolds number on the aerodynamic characteristics of compressor cascades. At first, the incompressible flow fields in the two-dimensional compressor cascade composed of C4 airfoils were numerically simulated with various values of Reynolds number. Compared with the corresponding experimental data, the numerically estimated trend of total pressure loss as a function of Reynolds number showed good agreement with that of experiment. From the visualized numerical results, the thickness of boundary layer and wake were found to increase with the decrease of Reynolds number. Especially at very low Reynolds number, the separation of boundary layer and vortex shedding were observed. The other series, as the preparatory investigation, the flow fields in the transonic compressor, NASA Rotor 37, were simulated under the several conditions, which corresponded to the operation at sea level static and at 10 km of altitude with low density and temperature. It was found that, in the case of operation at high altitude, the separation region on the blade surface became lager, and that the radial and reverse flow around the trailing edge become stronger than those under sea level static condition.

  • PDF

Effect on the Flow and Heat Transfer of Endwall by Installation of Cut Pin in Front of Pin-fin Array of Turbine Blade Cooling Passage (가스터빈 블레이드 핀-휜 내부 냉각 유로에 분절핀 설치에 따른 바닥면 유동 및 열전달 특성)

  • Choi, Seok Min;Kim, Su Won;Park, Hee Seung;Kim, Yong Jin;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.43-55
    • /
    • 2020
  • The effect of cutted pin in front of pin-fin array was analyzed for increasing the cooling performance of gas turbine blade. The numerical simulations were conducted to figure out the flow and thermal characteristics. The base case which is staggered pin-fin array, cut pin case 1 which has X2/Dp=1.25 cut pin and cut pin case 2 which has X3/Dp=1.75 cut pin were compared. The results showed that cut pin increases the strength of the horseshoe vortex which occurred at the leading edge of pin-fin array. Furthermore, the wake effect is reduced at the trailing edge of pin-fin array. As a result, the heat transfer distribution on the endwall increases. However, the friction factor increases owing to the installation of cut pin, but the thermal performance factor is increased maximum 23.8% in cut pin case 2. Therefore, installation of cut pin will be helpful for increasing the cooling performance of pin-fin array of gas turbine blade.