• 제목/요약/키워드: Traffic signals

검색결과 255건 처리시간 0.025초

Real-Time Stochastic Optimum Control of Traffic Signals

  • Lee, Hee-Hyol
    • Journal of information and communication convergence engineering
    • /
    • 제11권1호
    • /
    • pp.30-44
    • /
    • 2013
  • Traffic congestion has become a serious problem with the recent exponential increase in the number of vehicles. In urban areas, almost all traffic congestion occurs at intersections. One of the ways to solve this problem is road expansion, but it is difficult to realize in urban areas because of the high cost and long construction period. In such cases, traffic signal control is a reasonable method for reducing traffic jams. In an actual situation, the traffic flow changes randomly and its randomness makes the control of traffic signals difficult. A prediction of traffic jams is, therefore, necessary and effective for reducing traffic jams. In addition, an autonomous distributed (stand-alone) point control of each traffic light individually is better than the wide and/or line control of traffic lights from the perspective of real-time control. This paper describes a stochastic optimum control of crossroads and multi-way traffic signals. First, a stochastic model of traffic flows and traffic jams is constructed by using a Bayesian network. Secondly, the probabilistic distributions of the traffic flows are estimated by using a cellular automaton, and then the probabilistic distributions of traffic jams are predicted. Thirdly, optimum traffic signals of crossroads and multi-way intersection are searched by using a modified particle swarm optimization algorithm to realize real-time traffic control. Finally, simulations are carried out to confirm the effectiveness of the real-time stochastic optimum control of traffic signals.

국내의 LED 교통신호등의 기술현황 분석연구 (Technical Status of LED Traffic Signals made in Korea)

  • 정학근;정봉만;한수빈;박석인;김규덕;유승원
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2004년도 춘계학술대회 논문집
    • /
    • pp.171-174
    • /
    • 2004
  • Concerning Korean energy consumption, 20% of the total electrical energy (96% is now exported) is consumed in lighting area. Accordingly, it is one of the most important governmental policies to efficiently utilize electricity due to development and application of high-efficiency lighting equipment. In Korea, widely-built traffic signals employ an incandescent and are of 100W/300 mm, and 280,080set/801,932lamps have been installed and operated by 1999. Of them, 58%(161,181set), 25%(69,655set) and 18%(49,244set) correspond to traffic signals, pedestrian signals and other supplementary signals respectively. It was estimated that electrical energy consumed 28MW instantaneously, 245GWH annually. On the other hand, the LED traffic signal is expected to be a future traffic signal since if traffic signals are replaced by LEDs, energy saving effect of 85% and drop of 75% in maintenance fee will be obtained. In this paper, the performance and characteristics of many LED traffic signals made in Korea are summarized in order to reform Korean standard of LED traffic signals.

  • PDF

Effects of Traffic Signals with a Countdown Indicator: Driver's Reaction Time and Subjective Satisfaction in Driving Simulation

  • Chang, Joonho;Jung, Kihyo
    • 대한인간공학회지
    • /
    • 제36권5호
    • /
    • pp.459-466
    • /
    • 2017
  • Objective: This study examined two traffic signals with a countdown indicator in terms of driver's reaction time and subjective satisfaction score and their performance was compared with a standard traffic signal in driving simulation. Background: Dilemma zone is created when a traffic light changes at intersections. It often pushes drivers to rush in urgent and premature decision making whether to go or stop and thus induces unnecessary mental load among drivers, which may lead to sudden conflicts with following vehicles at intersections. Method: Forty college students (male: 20, female: 20) participated in this driving simulation study. Three traffic signals were employed: (1) standard traffic signal; (2) countdown-separated signal; and (3) countdown-overlaid signal. The countdown-separated and countdown-overlaid signals were designed to inform drivers of the remaining time of a green light before tuning to an amber light. Reaction times (sec) and satisfaction scores (7-point scale) for the two signals with a countdown indicator were compared with those for the standard traffic signal. Results: Reaction times of the countdown-separated (0.49 sec) and countdown-overlaid (0.43 sec) signals were significantly shorter than that of the standard signal (0.67 sec). Satisfaction scores of the countdown-separated (5.3 point) and countdown-overlaid (5.6 point) signals were greater than that of the standard signal (3.8 point). Lastly, the countdown-overlaid signal showed better performance than the countdown-separated signal, but their differences in reaction time (0.06 sec) and satisfaction score (0.3 point) were small. Conclusion: Traffic signals with a countdown indicator can improve drivers' reaction time and satisfaction score than the standard traffic signal. Application: Traffic signals with a countdown indicator will be useful for reducing the length of dilemma zone at intersections, by allowing drivers to predict the remaining time of a green light.

서울시(市) 신호체제의 적정 phase split 과 연쇄화를 위한 최적 offset (Determination of Optimal Phase Split and Offset for the Synchronization of Traffic Signals in the CBD of Seoul)

  • 박경수
    • 대한산업공학회지
    • /
    • 제3권1호
    • /
    • pp.49-53
    • /
    • 1977
  • The coordinated control of the traffic signals of adjacent intersections can reduce delays, relative number of stops and congestions in the coordinated traffic area. The road capacity can be increased to a certain extend because the stopping and starting of vehicles facing red traffic lights can be avoided in many instances due to the progression established along an artery. However, if traffic centers or leaves the main flow in irregular volumes on the intermediate road section, a coordination of traffic signals is unnecessary and may even be harmful. Therefore, a computer simulation model to simulate and predict the effectiveness of a synchronized traffic signal system in the CBD of Seoul was developed and alternative policy variables, such as cycle time, offsets, phase splits, to be fed into the simulation model had to be generated. This is a report of (1) the development of a heuristic algorithm for the determination of phase splits when there are amber periods specifically reserved for left turns and (2) the computerization of time-space diagramming.

  • PDF

HSI/YCbCr 색상모델과 에이다부스트 알고리즘을 이용한 실시간 교통신호 인식 (Real Time Traffic Signal Recognition Using HSI and YCbCr Color Models and Adaboost Algorithm)

  • 박상훈;이준웅
    • 한국자동차공학회논문집
    • /
    • 제24권2호
    • /
    • pp.214-224
    • /
    • 2016
  • This paper proposes an algorithm to effectively detect the traffic lights and recognize the traffic signals using a monocular camera mounted on the front windshield glass of a vehicle in day time. The algorithm consists of three main parts. The first part is to generate the candidates of a traffic light. After conversion of RGB color model into HSI and YCbCr color spaces, the regions considered as a traffic light are detected. For these regions, edge processing is applied to extract the borders of the traffic light. The second part is to divide the candidates into traffic lights and non-traffic lights using Haar-like features and Adaboost algorithm. The third part is to recognize the signals of the traffic light using a template matching. Experimental results show that the proposed algorithm successfully detects the traffic lights and recognizes the traffic signals in real time in a variety of environments.

전방신호기가 교통사고에 미치는 영향 연구 (Impacts of Pre-signals on Traffic Crashes at 4-leg Signalized Intersections)

  • 김병은;이영인
    • 한국도로학회논문집
    • /
    • 제15권4호
    • /
    • pp.135-146
    • /
    • 2013
  • PURPOSES : This study aimed to analyze the impact the operation of pre-signals at 4-leg signalized intersections and present primary environmental factors of roads that need to be considered in the installation of pre-signals. METHODS : Shift of proportions safety effectiveness evaluation method which assesses shifts in proportions of target collision types to determine safety effectiveness was applied to analyze traffic crash by types. Also, Empirical Bayes before/after safety effectiveness evaluation method was adapted to analyze the impact pre-signal installation. Negative binomial regression was conducted to determine SPF(safety performance function). RESULTS : Pre-signals are effective in reducing the number of head on, right angle and sideswipe collisions and both the total number of personal injury crashes and severe crashes. Also, it is deemed that each factor used as an independent variable for the SPF model has strong correlation with the total number of personal injury crashes and severe crashes, and impacts general traffic crashes as a whole. CONCLUSIONS: This study suggests the following should be considered in pre-signal installation on intersections. 1) U-turns allowed in the front and rear 2) A high number of roads that connect to the intersection 3) Many right-turn traffic flows 4) Crosswalks installed in the front and rear 5) Insufficient left-turn lanes compared to left-turn traffic flows or no left-turn-only lane.

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.

DEVELOPMENT OF MATDYMO (MULTI-AGENT FOR TRAFFIC SIMULATION WITH VEHICLE DYNAMICS MODEL) I: DEVELOPMENT OF TRAFFIC ENVIRONMENT

  • CHOI K. Y.;KWON S. J.;SUH M. W.
    • International Journal of Automotive Technology
    • /
    • 제7권1호
    • /
    • pp.25-34
    • /
    • 2006
  • For decades, simulation technique has been well validated in areas such as computer and communication systems. Recently, the technique has been much used in the area of transportation and traffic forecasting. Several methods have been proposed for investigating complex traffic flows. However, the dynamics of vehicles and diversities of driver characteristics have never been considered sufficiently in these methods, although they are considered important factors in traffic flow analysis. In this paper, we propose a traffic simulation tool called Multi-Agent for Traffic Simulation with Vehicle Dynamics Model (MATDYMO). Road transport consultants, traffic engineers and urban traffic control center managers are expected to use MATDYMO to efficiently simulate traffic flow. MATDYMO has four sub systems: the road management system, the vehicle motion control system, the driver management system, and the integration control system. The road management system simulates traffic flow for various traffic environments (e.g., multi-lane roads, nodes, virtual lanes, and signals); the vehicle motion control system constructs the vehicle agent by using various vehicle dynamic models; the driver management system constructs the driver agent capable of having different driving styles; and lastly, the integrated control system regulates the MATDYMO as a whole and observes the agents running in the system. The vehicle motion control system and driver management system are described in the companion paper. An interrupted and uninterrupted flow model were simulated, and the simulation results were verified by comparing them with the results from a commercial software, TRANSYT-7F. The simulation result of the uninterrupted flow model showed that the driver agent displayed human-like behavior ranging from slow and careful driving to fast and aggressive driving. The simulation of the interrupted flow model was implemented as two cases. The first case analyzed traffic flow as the traffic signals changed at different intervals and as the turning traffic volume changed. Second case analyzed the traffic flow as the traffic signals changed at different intervals and as the road length changed. The simulation results of the interrupted flow model showed that the close relationship between traffic state change and traffic signal interval.

녹색신호 점멸주기와 횡단보행거리가 보행자에게 미치는 영향분석 (A Study on Flickering Cycle of Green Signal and walking distance for the Pedestrian)

  • 이상도;손주희
    • 한국산업경영시스템학회:학술대회논문집
    • /
    • 한국산업경영시스템학회 2002년도 춘계학술대회
    • /
    • pp.273-278
    • /
    • 2002
  • Modern society is an interaction between many different environments. It is important to the mutual relationships between people and especially between people and the environment. One of the mutual relationships between people and the environment is the traffic system, especially the traffic signals which give priority to pedestrian and traffic flow. Traffic signals for the pedestrian on the crosswalk contribute to a safe road environment for the pedestrian, while the traffic signals for the pedestrian running for the flickering of the green signal causes psychological stress. Therefore, this study investigated whether the walking velocity was influenced by the flickering of the green signal or not. Also, this study investigated whether the walking distance had an effect on the walking velocity of the elderly pedestrian or not. It was proved that the flickering of the green signal and the walking distance influenced the walking velocity and subjective sensitiveness according to the result of this study.

  • PDF

지능제어기법을 이용한 신호등 주기 최적화 (Optimization of Traffic Signals Using Intelligent Control Methods)

  • 김근범;김경근;장욱;박광성;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.735-738
    • /
    • 1997
  • The traffic congestion caused by the exploding increase of vehicles became one of the severest social problems. Among the various approaches to solve this problem, controlling the length of traffic signals appropriately according to the individual traffic situation would be the most plausible and cost-effective method. To design a traffic signal controller which has such a property as adaptive decision-making process, we adopt fuzzy logic control method(fuzzy traffic signal controller), Moreover, using genetic algorithms we obtain an optimized fuzzy traffic signal controller (GA-fuzzy traffic signal controller). To evaluate and validate the proposed fuzzy and GA-fuzzy traffic signal controller, simulation results are presented.

  • PDF