• 제목/요약/키워드: Traffic Adaptive

Search Result 504, Processing Time 0.027 seconds

An Adaptive Energy-Efficient and Low-Latency MAC Protocol for Wireless Sensor Networks

  • Liu, Hao;Yao, Guoliang;Wu, Jianhui;Shi, Longxing
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.510-517
    • /
    • 2010
  • In this paper, an adaptive MAC protocol (variable load adaptive (VLA)-MAC) is proposed for wireless sensor networks. This protocol can achieve high energy efficiency and provide low latency under variable-traffic-load conditions. In the case of VLA-MAC, traffic load is measured online and used for adaptive adjustment. Sensor nodes transmit packets in bursts under high load conditions to alleviate packet accumulation and reduce latency. This also removes unnecessary listen action and decreases energy consumption in low load conditions. Simulation results show that the energy efficiency, latency, and throughput achieved by VLA-MAC are higher than those achieved by some traditional approaches.

A Novel Globally Adaptive Load-Balanced Routing Algorithm for Torus Interconnection Networks

  • Wang, Hong;Xu, Du;Li, Lemin
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.405-407
    • /
    • 2007
  • A globally adaptive load-balanced routing algorithm for torus interconnection networks is proposed. Unlike previously published algorithms, this algorithm employs a new scheme based on collision detection to handle deadlock, and has higher routing adaptability than previous algorithms. Simulation results show that our algorithm outperforms previous algorithms by 16% on benign traffic patterns, and by 10% to 21% on adversarial traffic patterns.

  • PDF

A Study on an Adaptive AQM Using Queue Length Variation

  • Seol, Jeong-Hwan;Lee, Ki-Young
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.19-23
    • /
    • 2008
  • The AQM (Active Queue Management) starts dropping packets earlier to notify traffic sources about the incipient stage of congestion. The AQM improves fairness between response flow (like TCP) and non-response flow (like UDP), and it can provide high throughput and link efficiency. In this paper, we suggest the QVARED (Queue Variation Adaptive RED) algorithm to respond to bursty traffic more actively. It is possible to provide more smoothness of average queue length and the maximum packet drop probability compared to RED and ARED (Adaptive RED). Therefore, it is highly adaptable to new congestion condition. Our simulation results show that the drop rate of QVARED is decreased by 80% and 40% compare to those of RED and ARED, respectively. This results in shorter end-to-end delay by decreasing the number of retransmitted packets. Also, the QVARED reduces a bias effect over 18% than that of drop-tail method; therefore packets are transmitted stably in the bursty traffic condition.

Flexible Multimedia Streaming Based on the Adaptive Chunk Algorithm (적응 청크 알고리즘 기반 멀티미디어 스트리밍 알고리즘)

  • Kim Dong-Hwan;Kim Jung-Keun;Chang Tae-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.5
    • /
    • pp.324-326
    • /
    • 2005
  • An adaptive Chunk algorithm is newly devised and a collaborative streaming is designed for high quality multimedia streaming service under time varying traffic conditions. An LMS based prediction filter is used to compensate the effect of time varying background traffic of the WAN. The underflow is generated for the $20\~28\%$ of the data stored in the central server by applying the FARIMA(Fractional Autoregressive Integrated Moving Average) traffic modeling method. The proposed algorithm is tested with the MPEG-2 video files and compensates $71\~85\%$ of central stream underflow.

Dynamic Network Provisioning for Time-Varying Traffic

  • Sharma, Vicky;Kar, Koushik;La, Richard;Tassiulas, Leandros
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.408-418
    • /
    • 2007
  • In this paper, we address the question of dynamic network provisioning for time-varying traffic rates, with the objective of maximizing the system throughput. We assume that the network is capable of providing bandwidth guaranteed traffic tunnels for an ingress-egress pair and present an approach that (1) updates the tunnel routes and (2) adjusts the tunnel bandwidths, in an incremental, adaptive manner, based on the variations in the incoming traffic. First, we consider a simpler scenario where tunnel routes are fixed, and present an approach for adjusting the tunnel bandwidths dynamically. We show, through simulations, that our dynamic bandwidth assignment algorithm significantly outperforms the optimal static bandwidth provisioning policy, and yields a performance close to that of the optimal dynamic bandwidth provisioning policy. We also propose an adaptive route update algorithm, which can be used in conjunction with our dynamic bandwidth assignment policy, and leads to further improvement in the overall system performance.

An Adaptive RIO buffer management scheme for QoS guarantee of Assured Service in Differentiated Services (DiffServ 방식의 Assured Service에서 QoS 보장을 위한 Adaptive RIO 방식의 제안)

  • Hur, Kyeong;Kim, Moon-Kyu;Lee, Seung-Hyun;Cho, Seong-Dae;Eom, Doo-Seop;Tchah, Kyun-Hyon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6C
    • /
    • pp.581-593
    • /
    • 2002
  • In this paper, we proposed an Adaptive RIO scheme to solve the problem of RIO scheme that occurs when admission control is performed for QoS guarantee of Assured Service in Differentiated Services. To prevent an early random drop of the admitted In-profile packet, proposed Adaptive RIO scheme updates parameters of RIO scheme every time interval according to the estimated numbers of maximum packet arrivals of In-profile traffic and total traffic during the next time interval. The numbers of maximum packet arrivals during the next time interval are estimated based on the buffer size determined by the network topology and the ratio of bandwidth allocated to each subclass. We found from simulation results that, compared with RIO scheme, proposed Adaptive RIO scheme can improve performance of the throughput for In-profile traffic when admission control is performed or congestion occurs.

A Study on the adaptive Connection Admission Control Method in ATM Networks (ATM망에서 적응적 연결수락제어 방법에 관한 연구)

  • 한운영;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.9
    • /
    • pp.1719-1729
    • /
    • 1994
  • In this paper, an adaptive CAC(Connection Admission Control) method is proposed. The adaptive CAC uses traffic estimates derived from both traffic parameter specified by user and cell flow measurements. Traffic estimation using user-specified parameters is performed at every moment of connection request or connection release by recursive formula which makes real-time calculation possible. Traffic estimation using cell flow measurement is carried out when the number of connected calls does not change during a measurement reflection period-renewal period. The most import ant thing for the traffic estimation using cell flow measurement is the determination of the length of a renewal period to trace a real traffic flow with an allowable time lag and the measurement reflection ratio(MRR) both to reduce the portion of overestimation and to avoid underestimation of real traffic flow. To solve these problems, the adaptive CAC updates renewal period and MRR adaptively according to the number of connections and the elapsed time after last connection or release respectively. Performance analysis for the proposed method is evaluated in several aspects for the cases of both homogeneous and heterogeneous bursty traffic. Numerical examples show the adaptive CAC method has the better performance compared with conventional CAC method based on burst model from the both utilization and QOS point of view.

  • PDF

Adaptive Bandwidth Control System with Incoming Traffic in Home Network

  • Shin Hye Min;Kim Hyoung Yuk;Lee Ho Chan;Kim Hong Seok;Park Hong Seong
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.147-151
    • /
    • 2004
  • QoS is a subject of high interest for successful deployment of various services in a home gateway and the gateway is possible to support QoS by installing existing queuing disciplines, which control the outgoing traffic to guarantee only QoS of the traffic. But m the home gateway it is also important to guarantee QoS of the incoming traffic. This paper proposes an adaptive control of the traffic to guarantee QoS of incoming traffic into the home gateway. In the proposed method, the upper limit of the available bandwidth of sending rate varies with receiving rate. And the proposed method makes the gap between the allocated rate and the actual service rate of the traffic narrow. Some experiments on a test bed show that the proposed method is valid.

  • PDF

Adaptive Input Traffic Prediction Scheme for Proportional Delay Differentiation in Next-Generation Networks (차세대 네트워크에서 상대적 지연 차별화를 위한 적응형 입력 트래픽 예측 방식)

  • Paik, Jung-Hoon
    • Convergence Security Journal
    • /
    • v.7 no.2
    • /
    • pp.17-25
    • /
    • 2007
  • In this paper, an algorithm that provisions proportional differentiation of packet delays is proposed with an objective for enhancing quality of service (QoS) in future packet networks. It features an adaptive scheme that adjusts the target delay every time slot to compensate the deviation from the target delay which is caused by the prediction error on the traffic to be arrived in the next time slot. It predicts the traffic to be arrived at the beginning of a time slot and measures the actual arrived traffic at the end of the time slot. The difference between them is utilized to the delay control operation for the next time slot to offset it. As it compensates the prediction error continuously, it shows superior adaptability to the bursty traffic as well as the exponential rate traffic. It is demonstrated through simulations that the algorithm meets the quantitative delay bounds and shows superiority to the traffic fluctuation in comparison with the conventional non-adaptive mechanism. The algorithm is implemented with VHDL on a Xilinx Spartan XC3S1500 FPGA and the performance is verified under the test board based on the XPC860P CPU.

  • PDF

Design and Implementation of adaptive traffic signal simulator system for U-Traffic (U-Traffic의 적응형 교통 신호 시뮬레이터 구축에 대한 연구)

  • Jang, Won-Tae;Kang, Woo-Suk
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.480-487
    • /
    • 2012
  • In Busan, the structural limitations of the road, is causing severe traffic congestion and low speed of the vehicle. So the existing traffic control system needs improvements to its structure. A study on Optimal Traffic Signal System and Improvement for User Oriented Public Transit Service are required. U-city is a city or region with ubiquitous information technology. All information systems are linked, and virtually everything is linked to an information technologies. U-Traffic goal is to maximize of traffic information services based on advanced information technology to integrate of transportation infrastructure. The objectives of this research are : a vehicle detection method through a variety of sensors, an algorithm of the traffic signal system, a design and implementation a simulator to compare between the fixed traffic signal and adaptive traffic signal system. This simulator will have allowed analysis techniques for the study of traffic control. Results of simulator test shows that traffic congestion can be some reduce.