• Title/Summary/Keyword: Trading Strategy

Search Result 222, Processing Time 0.021 seconds

An Empirical Study on the Cryptocurrency Investment Methodology Combining Deep Learning and Short-term Trading Strategies (딥러닝과 단기매매전략을 결합한 암호화폐 투자 방법론 실증 연구)

  • Yumin Lee;Minhyuk Lee
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.377-396
    • /
    • 2023
  • As the cryptocurrency market continues to grow, it has developed into a new financial market. The need for investment strategy research on the cryptocurrency market is also emerging. This study aims to conduct an empirical analysis on an investment methodology of cryptocurrency that combines short-term trading strategy and deep learning. Daily price data of the Ethereum was collected through the API of Upbit, the Korean cryptocurrency exchange. The investment performance of the experimental model was analyzed by finding the optimal parameters based on past data. The experimental model is a volatility breakout strategy(VBS), a Long Short Term Memory(LSTM) model, moving average cross strategy and a combined model. VBS is a short-term trading strategy that buys when volatility rises significantly on a daily basis and sells at the closing price of the day. LSTM is suitable for time series data among deep learning models, and the predicted closing price obtained through the prediction model was applied to the simple trading rule. The moving average cross strategy determines whether to buy or sell when the moving average crosses. The combined model is a trading rule made by using derived variables of the VBS and LSTM model using AND/OR for the buy conditions. The result shows that combined model is better investment performance than the single model. This study has academic significance in that it goes beyond simple deep learning-based cryptocurrency price prediction and improves investment performance by combining deep learning and short-term trading strategies, and has practical significance in that it shows the applicability in actual investment.

A Plan on Expanding Export of Small Businesses Using e-Trading Application in Industrie 4.0 (인더스트리 4.0시대에서 전자무역을 활용한 중소기업 수출 확대 방안)

  • SONG, Gye-Eui
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.78
    • /
    • pp.53-72
    • /
    • 2018
  • Recently, it has been known that it need to be solved export marketing on expanding export of Small Business Commodity. Therefore, the purpose of this paper is to analyse on expanding export of Small Business Commodity through e-Trading Application in Industrie 4.0. This study deals with the terms of three connection success factors on expanding export of Small Business Commodity through e-Trading Application in Industrie 4.0 which are a firm's subjective factors, a industrial environment factors, and a governmental policy factors. According to analysis results of the three success factors, a firm's subjective factors(4.13 score) are scored at the most ones of the three success factors, to be compared with a industrial environment factors(3.89 score), with a government policy factors(3.72 score). Therefore, first of all, it is important to expanding export of Small Business Commodity through e-Trading Application in Industrie 4.0 through as follows, a firm's subjective factors : (1) to procure concentrated market strategy and real market capacity, (2) to procure speedy satisfaction of customer needs and confidence, (3) to procure ability of export marketing through e-Trading Application, (4) to enhance export expanding strategy coincided in Industrie 4.0. And, the next, we have to expanding export of Small Business Commodity through e-Trading Application in Industrie 4.0 through considering a industrial environment factors and a government policy factors.

  • PDF

A Strategy to Integrated Emission Trading System for Greenhouse Gas with that of Air Pollutants (대기오염물질과 온실가스 배출권 거래제 연계 방안)

  • Lee Kyoo-Yong;Lee Jae-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.561-571
    • /
    • 2005
  • To introduce an emissions trading system for GHG that currently have no reduction requirements, the following should be considered as priorities: eliciting the participation of the industrial sector and linking GHG emission trading systems to the emissions trading system (implemented from July 2007) that has become part of national policy with the enactment of the Special Act. Two directions can serve as viable alternatives in that regard. One is a baseline-and-credit method based on incentive auctioning. This has the advantage of inducing participation through economic incentives without a reductions commitment. The downside of this method is that it requires vast investments, as well as the fact that reaching an agreement between participants and the government to decide an objective baseline is difficult. On the other hand, the cap-and-trade method set forth in the Special Act is attractive in that it can be integrated with the air pollutant emissions trading system, but it would be difficult to elicit the participation of the industrial sector in the absence of GHG emission reduction requirements. In the current situation, it would be preferable for the government to induce the participation of the industrial sector by devising a wide variety of incentives because taking part in the emissions trading system before reducing GHG emissions offers large incentives through learning by doing. The timing of GHG reduction commitments and emissions trading system implementation may be uncertain but their Implementation will be unavoidable. Thus the government needs to facilitate preparations for emissions trading of GHG in the future and continuously review its operation in integration with the air pollutant emissions trading system to maximize adaptation and teaming by doing effect in the industrial sector.

A Study on Developing a Profitable Intra-day Trading System for KOSPI 200 Index Futures Using the US Stock Market Information Spillover Effect

  • Kim, Sun-Woong;Choi, Heung-Sik;Lee, Byoung-Hwa
    • Journal of Information Technology Applications and Management
    • /
    • v.17 no.3
    • /
    • pp.151-162
    • /
    • 2010
  • Recent developments in financial market liberalization and information technology are accelerating the interdependence of national stock markets. This study explores the information spillover effect of the US stock market on the overnight and daytime returns of the Korean stock market. We develop a profitable intra-day trading strategy based on the information spillover effect. Our study provides several important conclusions. First, an information spillover effect still exists from the overnight US stock market to the current Korean stock market. Second, Korean investors overreact to both good and bad news overnight from the US. Therefore, there are significant price reversals in the KOSPI 200 index futures prices from market open to market close. Third, the overreaction effect is different between weekdays and weekends. Finally, the suggested intra-day trading system based on the documented overreaction hypothesis is profitable.

  • PDF

Can Big Data Help Predict Financial Market Dynamics?: Evidence from the Korean Stock Market

  • Pyo, Dong-Jin
    • East Asian Economic Review
    • /
    • v.21 no.2
    • /
    • pp.147-165
    • /
    • 2017
  • This study quantifies the dynamic interrelationship between the KOSPI index return and search query data derived from the Naver DataLab. The empirical estimation using a bivariate GARCH model reveals that negative contemporaneous correlations between the stock return and the search frequency prevail during the sample period. Meanwhile, the search frequency has a negative association with the one-week- ahead stock return but not vice versa. In addition to identifying dynamic correlations, the paper also aims to serve as a test bed in which the existence of profitable trading strategies based on big data is explored. Specifically, the strategy interpreting the heightened investor attention as a negative signal for future returns appears to have been superior to the benchmark strategy in terms of the expected utility over wealth. This paper also demonstrates that the big data-based option trading strategy might be able to beat the market under certain conditions. These results highlight the possibility of big data as a potential source-which has been left largely untapped-for establishing profitable trading strategies as well as developing insights on stock market dynamics.

Comparative Study of Automatic Trading and Buy-and-Hold in the S&P 500 Index Using a Volatility Breakout Strategy (변동성 돌파 전략을 사용한 S&P 500 지수의 자동 거래와 매수 및 보유 비교 연구)

  • Sunghyuck Hong
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.57-62
    • /
    • 2023
  • This research is a comparative analysis of the U.S. S&P 500 index using the volatility breakout strategy against the Buy and Hold approach. The volatility breakout strategy is a trading method that exploits price movements after periods of relative market stability or concentration. Specifically, it is observed that large price movements tend to occur more frequently after periods of low volatility. When a stock moves within a narrow price range for a while and then suddenly rises or falls, it is expected to continue moving in that direction. To capitalize on these movements, traders adopt the volatility breakout strategy. The 'k' value is used as a multiplier applied to a measure of recent market volatility. One method of measuring volatility is the Average True Range (ATR), which represents the difference between the highest and lowest prices of recent trading days. The 'k' value plays a crucial role for traders in setting their trade threshold. This study calculated the 'k' value at a general level and compared its returns with the Buy and Hold strategy, finding that algorithmic trading using the volatility breakout strategy achieved slightly higher returns. In the future, we plan to present simulation results for maximizing returns by determining the optimal 'k' value for automated trading of the S&P 500 index using artificial intelligence deep learning techniques.

A Study on Pairs Trading Performance in Global Futures Markets (페어트레이딩 전략의 수익성 연구 : 해외 선물시장을 중심으로)

  • Kim, Beomsu;Choi, Heung Sik;Kim, Sunwoong
    • Korean Management Science Review
    • /
    • v.33 no.4
    • /
    • pp.1-15
    • /
    • 2016
  • Pairs trading is an arbitrage trading strategy using statistical properties of the spreads between two assets. This study analyzes the performance of the statistical pairs trading with the pairs selected from the same category as well as from the different category in the CME and other futures markets. Empirical results show that the pairs trading performance of the same category is poor whereas that of the different category proves profitable. This implies that the spreads between different category pairs can have the mean reversion property if pairs are properly selected using co-integration test, which is contrary to the existing research results on the overseas futures pairs trading.

The Information Content of Option Prices: Evidence from S&P 500 Index Options

  • Ren, Chenghan;Choi, Byungwook
    • Management Science and Financial Engineering
    • /
    • v.21 no.2
    • /
    • pp.13-23
    • /
    • 2015
  • This study addresses the question as to whether the option prices have useful predictive information on the direction of stock markets by investigating a forecasting power of volatility curvatures and skewness premiums implicit in S&P 500 index option prices traded in Chicago Board Options Exchange. We begin by estimating implied volatility functions and risk neutral price densities every minute based on non-parametric method and then calculate volatility curvature and skewness premium using them. The rationale is that high volatility curvature or high skewness premium often leads to strong bullish sentiment among market participants. We found that the rate of return on the signal following trading strategy was significantly higher than that on the intraday buy-and-hold strategy, which indicates that the S&P500 index option prices have a strong forecasting power on the direction of stock index market. Another major finding is that the information contents of S&P 500 index option prices disappear within one minute, and so one minute-delayed signal following trading strategy would not lead to any excess return compared to a simple buy-and-hold strategy.

A Study on the Relationship between Internet Search Trends and Company's Stock Price and Trading Volume (인터넷 검색트렌드와 기업의 주가 및 거래량과의 관계에 대한 연구)

  • Koo, Pyunghoi;Kim, Minsoo
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.2
    • /
    • pp.1-14
    • /
    • 2015
  • In this paper, we investigate the relationship between Internet search trends and stock market. Under the assumption that investors may use Internet search engine to obtain information for companies of their interests before taking actual investment actions, the relationship between the changes on Internet search volume and the fluctuation of trading volume as well as stock price of a company is analyzed with actual market data. A search trend investment strategy that reflects the changes on Internet search volume is applied to large enterprises' group and to small and medium enterprises' (SMEs) group, and the correlation between profit rate and trading volume is analyzed for each company group. Our search trend investment strategy has outperformed average stock market returns in both KOSPI and KOSDAQ markets during the seven-year study period (2007~2013). It is also shown that search trend investment strategy is more effective to SMEs than to large enterprises. The relationship between changes on Internet search volume and stock trading volume is stronger at SMEs than at large enterprises.

Developing Cryptocurrency Trading Strategies with Time Series Forecasting Model (시계열 예측 모델을 활용한 암호화폐 투자 전략 개발)

  • Hyun-Sun Kim;Jae Joon Ahn
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.152-159
    • /
    • 2023
  • This study endeavors to enrich investment prospects in cryptocurrency by establishing a rationale for investment decisions. The primary objective involves evaluating the predictability of four prominent cryptocurrencies - Bitcoin, Ethereum, Litecoin, and EOS - and scrutinizing the efficacy of trading strategies developed based on the prediction model. To identify the most effective prediction model for each cryptocurrency annually, we employed three methodologies - AutoRegressive Integrated Moving Average (ARIMA), Long Short-Term Memory (LSTM), and Prophet - representing traditional statistics and artificial intelligence. These methods were applied across diverse periods and time intervals. The result suggested that Prophet trained on the previous 28 days' price history at 15-minute intervals generally yielded the highest performance. The results were validated through a random selection of 100 days (20 target dates per year) spanning from January 1st, 2018, to December 31st, 2022. The trading strategies were formulated based on the optimal-performing prediction model, grounded in the simple principle of assigning greater weight to more predictable assets. When the forecasting model indicates an upward trend, it is recommended to acquire the cryptocurrency with the investment amount determined by its performance. Experimental results consistently demonstrated that the proposed trading strategy yields higher returns compared to an equal portfolio employing a buy-and-hold strategy. The cryptocurrency trading model introduced in this paper carries two significant implications. Firstly, it facilitates the evolution of cryptocurrencies from speculative assets to investment instruments. Secondly, it plays a crucial role in advancing deep learning-based investment strategies by providing sound evidence for portfolio allocation. This addresses the black box issue, a notable weakness in deep learning, offering increased transparency to the model.