• Title/Summary/Keyword: Trade off matrix method

Search Result 16, Processing Time 0.029 seconds

Design of a decoupled PID controller via MOCS for seismic control of smart structures

  • Etedali, Sadegh;Tavakoli, Saeed;Sohrabi, Mohammad Reza
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1067-1087
    • /
    • 2016
  • In this paper, a decoupled proportional-integral-derivative (PID) control approach for seismic control of smart structures is presented. First, the state space equation of a structure is transformed into modal coordinates and parameters of the modal PID control are separately designed in a reduced modal space. Then, the feedback gain matrix of the controller is obtained based on the contribution of modal responses to the structural responses. The performance of the controller is investigated to adjust control force of piezoelectric friction dampers (PFDs) in a benchmark base isolated building. In order to tune the modal feedback gain of the controller, a suitable trade-off among the conflicting objectives, i.e., the reduction of maximum modal base displacement and the maximum modal floor acceleration of the smart base isolated structure, as well as the maximum modal control force, is created using a multi-objective cuckoo search (MOCS) algorithm. In terms of reduction of maximum base displacement and story acceleration, numerical simulations show that the proposed method performs better than other reported controllers in the literature. Moreover, simulation results show that the PFDs are able to efficiently dissipate the input excitation energy and reduce the damage energy of the structure. Overall, the proposed control strategy provides a simple strategy to tune the control forces and reduces the number of sensors of the control system to the number of controlled stories.

Intrinsically Extended Moving Least Squares Finite Difference Method for Potential Problems with Interfacial Boundary (계면경계를 갖는 포텐셜 문제 해석을 위한 내적확장된 이동최소제곱 유한차분법)

  • Yoon, Young-Cheol;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.411-420
    • /
    • 2009
  • This study presents an extended finite difference method based on moving least squares(MLS) method for solving potential problems with interfacial boundary. The approximation constructed from the MLS Taylor polynomial is modified by inserting of wedge functions for the interface modeling. Governing equations are node-wisely discretized without involving element or grid; immersion of interfacial condition into the approximation circumvents numerical difficulties owing to geometrical modeling of interface. Interface modeling introduces no additional unknowns in the system of equations but makes the system overdetermined. So, the numbers of unknowns and equations are equalized by the symmetrization of the stiffness matrix. Increase in computational effort is the trade-off for ease of interface modeling. Numerical results clearly show that the developed numerical scheme sharply describes the wedge behavior as well as jumps and efficiently and accurately solves potential problems with interface.

Cost Distribution Strategies in the Film Industry: the Simplex Method (영화의 유통전략에 대한 연구: 심플렉스 해법을 중심으로)

  • Hwang, Hee-Joong
    • Journal of Distribution Science
    • /
    • v.14 no.10
    • /
    • pp.147-152
    • /
    • 2016
  • Purpose - High quality films are affected by both the production stage and various variables such as the size of the movie investment and marketing that changes consumers' perceptions. Consumer preferences should be recognized first to ensure that the movie is successful. If a film is produced without pre-investigation and analysis of consumer demand and taste, the probability of success will be low. This study investigates the balance of production costs, marketing costs, and profits using game theory, suggesting an optimization strategy using the simplex method of linear programming. Research design, data, and methodology - Before the release of the movie, initial demand is assumed to be driven largely by marketing costs. In the next phase, demand is assumed to be driven purely by a movie's production cost and quality, which might also further determine consumer demand. Thus, it is essential to determine how to distribute pure production costs and other costs (marketing) in a limited movie production budget. Moreover, it should be taken into account how to optimally distribute under the assumption that the audience and production company's input resources are limited. This research simplifies the assumptions for large-scale and relatively small-scale movie investments and examines how movie distribution participant profits differ when each cost is invested differently. Results - When first movers or market leaders have to choose both quality and marketing, it has been proven that pursuing a strategy choosing only one is more likely than choosing both. In this situation, market leaders should maximize marketing costs under the premise that market leaders will not lag their quality behind the quality of second movers. Additionally, focusing on movie marketing that produces a quick effect while ceding creative activity to increase movie quality is a natural outcome in the movie distribution environment since a cooperative strategy between market competitors is not feasible. Conclusions - Government film development policy should ignore quality competition between movie production companies and focus on preventing marketing competition. If movie production companies focus on movie production quality improvement then a creative competition would ensue.

Robust Controller Design for Hydraulic Dipod Platform Based on 2-DOF H Controller Synthesis Framework (2자유도 H 제어기 종합 프레임웍에 기반한 유압식 Dipod 플랫폼의 강인제어기 설계)

  • Lee, Young-Hoon;Cho, Taik-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.805-814
    • /
    • 2013
  • A hydraulic dipod platform is used for tracking and stabilizing an antenna system to designate a satellite on a moving vehicle. The 2-DOF controller is very well suited to this controller design object because it is more flexible than the 1-DOF controller when the design object is not only the consideration between stabilizing and tracking but also the trade-off between performance and robustness. The 2-DOF controller synthesis based on the $H_{\infty}$ framework is divided into two design procedures. In this hydraulic dipod platform example, the single-step method shows better performance whereas the two-step method shows better robustness. The difference between these two synthesis results is compared using the structural property of the interconnection system matrix.

Automated Areal Feature Matching in Different Spatial Data-sets (이종의 공간 데이터 셋의 면 객체 자동 매칭 방법)

  • Kim, Ji Young;Lee, Jae Bin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.89-98
    • /
    • 2016
  • In this paper, we proposed an automated areal feature matching method based on geometric similarity without user intervention and is applied into areal features of many-to-many relation, for confusion of spatial data-sets of different scale and updating cycle. Firstly, areal feature(node) that a value of inclusion function is more than 0.4 was connected as an edge in adjacency matrix and candidate corresponding areal features included many-to-many relation was identified by multiplication of adjacency matrix. For geometrical matching, these multiple candidates corresponding areal features were transformed into an aggregated polygon as a convex hull generated by a curve-fitting algorithm. Secondly, we defined matching criteria to measure geometrical quality, and these criteria were changed into normalized values, similarity, by similarity function. Next, shape similarity is defined as a weighted linear combination of these similarities and weights which are calculated by Criteria Importance Through Intercriteria Correlation(CRITIC) method. Finally, in training data, we identified Equal Error Rate(EER) which is trade-off value in a plot of precision versus recall for all threshold values(PR curve) as a threshold and decided if these candidate pairs are corresponding pairs or not. To the result of applying the proposed method in a digital topographic map and a base map of address system(KAIS), we confirmed that some many-to-many areal features were mis-detected in visual evaluation and precision, recall and F-Measure was highly 0.951, 0.906, 0.928, respectively in statistical evaluation. These means that accuracy of the automated matching between different spatial data-sets by the proposed method is highly. However, we should do a research on an inclusion function and a detail matching criterion to exactly quantify many-to-many areal features in future.

Development of Graphene Nanocomposite Membrane Using Layer-by-layer Technique for Desalination (다층박막적층법을 이용한 담수화용 그래핀 나노복합체 분리막 개발)

  • Yu, Hye-Weon;Song, Jun-Ho;Kim, Chang-Min;Yang, Euntae;Kim, In S.
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.75-82
    • /
    • 2018
  • Forward osmosis (FO) desalination system has been highlighted to improve the energy efficiency and drive down the carbon footprint of current reverse osmosis (RO) desalination technology. To improve the trade-off between water flux and salt rejection of thin film composite (TFC) desalination membrane, thin film nanocomposite membranes (TFN), in which nanomaterials as a filler are embeded within a polymeric matrix, are being explored to tailor the separation performance and add new functionality to membranes for water purification applications. The objective of this article is to develop a graphene nanocomposite membrane with high performance of water selective permeability (high water flux, high salt rejection, and low reverse solute diffusion) as a next-generation FO desalination membrane. For advances in fabrication of graphene oxide (GO) membranes, layer-by-layer (LBL) technique was used to control the desirable structure, alignment, and chemical functionality that can lead to ultrahigh-permeability membranes due to highly selective transport of water molecules. In this study, the GO nanocomposite membrane fabricated by LBL dip coating method showed high water flux ($J_w/{\Delta}{\pi}=2.51LMH/bar$), water selectivity ($J_w/J_s=8.3L/g$), and salt rejection (99.5%) as well as high stability in aqueous solution and under FO operation condition.