• Title/Summary/Keyword: Tractor simulation model

Search Result 63, Processing Time 0.029 seconds

Optimum Design of Cab Suspension for Agricultural Tractors (농용 트랙터 안전캡 현가 장치의 최적 설계)

  • 최현준;김경욱;김종언
    • Journal of Biosystems Engineering
    • /
    • v.23 no.4
    • /
    • pp.327-334
    • /
    • 1998
  • This work was intended to determine the optimum values of the cab suspension parameters by a simulation method in order to minimize the seat accelerations of agricultural tractors in the frequencies lower than 50Hz. A dynamic model of cab motions was developed and verified using a tractor excited over half-sine bumps on a concrete test road. A simulation program based on the model was also developed. A method was proposed to determine the optimum values of the suspension parameters. It was found that the natural frequencies of the cab and seat suspensions must be apart as far as possible until the sum of seat and cab accelerations is minimized, which also reduces the seat accelerations maximally.

  • PDF

Transmission Efficiency of Dual-clutch Transmission in Agricultural Tractors (농업용 트랙터 듀얼 클러치 변속기의 동력전달 효율 분석에 관한 연구)

  • Moon, Seok Pyo;Moon, Sang Gon;Kim, Jae Seung;Sohn, Jong Hyeon;Kim, Yong Joo;Kim, Su Chul
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.43-50
    • /
    • 2022
  • The aim of this study was to conduct basic research on the development of a dual-clutch transmission(DCT) and automatic transmission for agricultural tractors. The DCT layout and the DCT simulation model were developed using commercial software. Power transmission efficiency of the DCT and component power loss were analyzed to verify the developed simulation model. Power loss analysis of the components was conducted according to previous studies and ISO(International Organization for Standardization) standards. The power transmission efficiency of the DCT simulation model was 68.4-91.5% according to the gear range. The power loss in the gear, bearing, and clutch DCT system components was 0.75-1.49 kW, 0.77-2.99 kW, and 5.24-10.52 kW, respectively. The developed simulation model not include the rear axle, differential gear, final reduction gear. Therefore actual power transmission efficiency of DCT will be decreased. In a future study, an actual DCT can be developed through the simulation model in this study, and optimization design of DCT can be possible by comparing simulation results and actual vehicle test.

Efficient Yard Tractor Control Method for the Dual Cycling in Container Terminal (효율적인 듀얼 사이클을 위한 야드 트랙터 통제 방법)

  • Chung, Chang-Yun;Shin, Jae-Young
    • Journal of Navigation and Port Research
    • /
    • v.36 no.1
    • /
    • pp.69-74
    • /
    • 2012
  • Recent global supply chain, improving the efficiency of container shipping process is very important. In the overseas shipping of goods, the voyage of super containership is common to overcome amount of increasing cargo. Thus, container terminal managers make an experiment on the double cycle and dual cycle operation, which ship loading and unloading were carried out simultaneously, for maximizing the productivity of quay side. Yard Tractors(YTs) pooling methods also are introduced for increasing the efficiency of assignment of YTs. In this paper, we analyzed the efficiency of dual cycling through comparing existing pooling methods with the modified method for the dual cycling. We developed a simulation model using simulation analysis software, Arena. The result of experiment shown that the more dual cycling don't always increase the gross crane rate(GCR), which means productivity of quay cranes(QCs) per hour.

Prediction of Bulk Type Trailer Capacity in Consideration of Soil Physical Properties of Paddy Field (논 토양의 물리적 특성을 고려한 산물형 트레일러의 적정용량 예측)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • A computer simulation was carried out to determinate the optimum capacity of bulk type trailer which is used as a tractor attachment. Soil physical properties. such as soil moisture content. bulk density, soil hardness and soil texture were measured in the 10 major rice production area for computer simulation. Mathematical model which include soil physical properties and vehicle factor was used for computer simulation. Most of the soil texture of the investigated area was silty loam. Soil moisture content ranged between 30 and 40% mostly. Soil bulk density was in the range of 1.500 to 1.700 kg/㎥. Soil hardness ranged between 1 to 18 kg/$\textrm{cm}^2$. Soil hardness incorporate the effects of many soil physical properties such as moisture content texture and bulk density, and so the range of soil hardness was greater than any other physical properties. The capacity of bulk type trailer was above 3000 kg$_{f}$ fer the most of the investigated area. and mostly in the range of 4000 to 6000 kg$_{f}$ depending upon the slip. But for the soft soil area such as Andong and Namyang. tractor itself had mobility problem and showed minus trailer capacity for some places. For this area. the capacity of bulk type trailer ranged between 1000 and 2000 kg$_{f}$ mostly so bulk type trailer should be designed as a small capacity compared to the other area.ared to the other area. area.

Stress Analysis of Tractor Front-End Loader against Impact Load Using Flexible Multi-Body Dynamic Simulation (유연 다물체 동역학 해석을 이용한 충격 하중에 따른 트랙터 프론트 로더의 응력 분석)

  • Shin, Chang-Seop;Kim, Beom-Soo;Han, Hyun-Woo;Chung, Woo-Jin;Cho, Seung-Je;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.26-32
    • /
    • 2019
  • This study was conducted to analyze the stresses by impact loads on front-end loaders attached to tractors using flexible multi-body dynamics. The model was designed and validated by comparing previous experimental data with the simulation data obtained in this study. Nine sets of conditions were designed using three weights (500, 300, and 100 kg) loaded inside a bucket and three heights (1700, 1350, and 1000 mm) of the bucket from ground level. A parametric study was carried out at five locations for two types of parts of a front-end loader. All the safety factors for the five locations under all conditions were calculated and were greater than 1. Thus, the designs of the front-end loaders were structurally safe. Based on this study, front-end loaders attached to tractors can be designed effectively in terms of cost and safety.

Analysis Model Development and Sensitivity Analysis on Design Parameters of the Neutral Valve for HST (HST 중립밸브의 해석모델 개발 및 설계변수 민감도 분석)

  • Kim, D.M.;Jang, J.S.;Kim, S.C.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.41-46
    • /
    • 2014
  • The neutral valve for controlling the HST is one of the important valves for the vehicle control. Neutral valve takes a role of blocking or transmitting power to the vehicle. The operating principle of the neutral valve was developed through the analysis model. We also investigated the logical validity by analyzing the results of the analysis model. The analysis model was developed by using SimulationX witch is commercial software. The number of holes in the piston was selected as a variable initial compression of the spring, and the magnitude of the pressure pulsations and the diameter of the orifice for the sensitivity analysis were performed to design sensitivity analysis of the neutral valve.

Simulation Methodology for Automation of Port Systems : Example of Container Terminal (항만 시스템의 자동화를 위한 시뮬레이션 방법론 : 컨테이너 터미널의 예)

  • Lee, Jang-Se
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.154-162
    • /
    • 2010
  • A simulation technique is very useful method to analyze the performance on various engineering area. To automate port systems, we have need of simulation to analyze an effect of assigning and operating devices. Thus we propose simulation methodology to be applied to an analysis, evaluation, planning for port automation. To do this, we have adopted the discrete event system specification based system entity structure / model base framework for modeling and simulation environment. We have performed modeling and simulation on entities of port systems such as container crane, yard tractor, transfer crane, etc. The proposed methodology has an advantage being able to effectively simulate on alternatives of composition and operation strategy for port systems. Some case studies will show the validity of proposed simulation methodology.

Analysis of Agricultural Tractor Transmission using Actual Farm Workload (실부하 적용을 통한 농용 트랙터 변속기 해석)

  • Kim, Jeong-Gil;Park, Jin-Sun;Choi, Kyu-Jeong;Lee, Dong-Keun;Shin, Min-Seok;Oh, Joo-Young;Nam, Ju-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.42-48
    • /
    • 2020
  • The agricultural tractor is a multi-purpose vehicle, which is frequently used in the agricultural field. It must be highly reliable in terms of human safety. Design and analysis of agricultural tractors must be performed using actual agricultural workload to maintain high reliability. Additionally, the frequency with which various components and systems are used must also be taken into consideration. In this study, a tractor is built to measure its workload in the actual field. Further, the measured load was analyzed for various farming tasks. The range of ratios of consumed power to engine power was measured to be 42.6%-87.2%, 75.1%-97%, 26.5%-59.2% for a plow, rotary, and harvest tasks, respectively. The results were fed into a transmission simulation model to analyze the strength and life of the transmission components. We conclude that a more reliable product can be constructed by incorporating the transmission analyses using the actual load.

Characteristics of transmission efficiency in power driveline of agricultural tractors

  • I. H. Ryu;Kim, D. C.;Kim, K. U.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.132-138
    • /
    • 2000
  • Complex gear shifting and high speed-reduction ratio reduce the transmission efficiency in power driveline of agricultural tractors. According to a field test, the power transmission efficiency of a tractor in transporting operations was estimated about 70%. However, the actual efficiency was found by the experiment to fluctuate in a range of 56 to 87%. Therefore, the constant efficiency model commonly used for a simulation of power drivelines is not likely to simulate its performance more accurately. In order to predict power transmission efficiency more accurately, a new model was proposed and the new concepts of the maximum efficiency and sticking torque were introduced. The error mean between the measured and the predicted efficiencies was about 2.3% in mean. The new model reflecting the transmission characteristics in the power driveline of tractors could be used to analyze and predict the power transmission performance of tractors more accurately.

  • PDF

Reduced Order Luenberger State Observer Design for the Jackknifing Phenomenon Prevention of Articulated Vehicles using GPS (위성항법시스템을 이용한 연결식 차량의 잭나이핑 현상 예방을 위한 축소차수 상태관측기 설계)

  • Lee, Byung-Seok;Heo, Moon-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.688-698
    • /
    • 2012
  • This paper deals with ROLSO (Reduced Order Luenberger State Observer) design to prevent jackknifing phenomenon of articulated vehicles consisting of the tractor and semi-trailer by using GPS. In addition, by applying the regulator system using ROLSO feedback system, simulation's result presents that articulated vehicle's states are stabilized than the human's PR time (Preception Response time) rapidly. This simulation verifies that the automatic control of articulated vehicle's can be applied for the accident prevention for the time that the driver is unable to manage with the sudden accident. For this simulation, by using the equation of planar motion, the modeling of the articulated vehicle was performed. This modeling was expressed in the state space model. And FOLSO (Full Order Luenberger State Observer), ROLSO were designed by using the state space model of an articulated vehicle's dynamics.