• Title/Summary/Keyword: Tractive efficiency

Search Result 18, Processing Time 0.027 seconds

Effects of the Soil Moisture and Hardness on the Drawing Performance of a Two-Wheel Tractor. (토양수분과 경도가 동력경운기의 견인성능에 미치는 영향)

  • 박호석;차균도
    • Journal of Biosystems Engineering
    • /
    • v.2 no.1
    • /
    • pp.25-32
    • /
    • 1977
  • This experiment was conducted in order to find out the drawing performance of a two-wheel tractor under different levels of the soil moisture and hardness, so as to obtain some basic data for improving their drawing performance. With fairly homogeneous soil, 5 levels of soil moisture contents (8, 13, 17, 20 and 23%) and 3 levels of soil hardness (0 , 2 and 4kg/$cm^2$) were selected for this experiment.The summerized results are as follows ;1. The draft force, on the hard soil (hardness ; 4kg/$cm^2$), had a distinct tendency to decrease with the increasing soil moisture. On the medium soil (hardness ; 2 kg/$cm^2$), and the soft soil (hardness ; 0kg$cm^2$), the draft force showed the highest when the moisture contents were within the range of 16-19%.But the maximum draft force, on the soft soil, was higher than that on the medium soil by 10 %. 2. The driving axle torque increased with increasing soil by 10 %. 3.The values of horizontal distance between the soil reaction point and axle shaft were within the range of 0~10cm , and it had the tendency to increase with the increasing soil moisture. Also, it s value was the largest on the hard soil and the smallest on the soft soil. 4.The tractive efficiency decreased with the increasing soil moisture. On the hard soil, the average value of tractive efficiency was higher than that on the medium soil by 19.0% and that on the soft soil was lower than that on the medium soil. 5.The traction ratio were within the range of 30 ~45%, and their changing tendency with respect to the soil moisture was similar to that in the case of the draft force. 6. The travel resistance ratio tended to increased with increasing soil moisture, and the highest value was found on the soft soil, and the lowest on the hard soil.

  • PDF

Analysis of Traction Performance for Agricultural Tractor According to Soil Condition (토양 조건에 따른 농업용 트랙터의 견인 성능 분석)

  • Lee, Nam Gyu;Kim, Yong Joo;Baek, Seung Min;Moon, Seok Pyo;Park, Seong Un;Choi, Young Soo;Choi, Chang Hyun
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.133-140
    • /
    • 2020
  • Traction performance of a tractor varies depending on soil conditions. Sinkage and slip of the driving wheel for tractor frequently occur in a reclaimed land. The objective of this study was to develop a tractor suitable for a reclaimed land. Traction performance was evaluated according to soil conditions of reclaimed land and paddy field. Field experiments were conducted at two test sites (Fields A: paddy field; and Field B: reclaimed land). The tractor load measurement system was composed of an axle rotation speed sensor, a torque meter, a six-component load cell, GPS, and a DAQ (Data Acquisition System). Soil properties including soil texture, water content, cone index, and electrical conductivity (EC) were measured. Referring to previous researches, the tractor traveling speed was set to B3 (7.05 km/h), which was frequently used in ridge plow tillage. Soil moisture contents were 33.2% and 48.6% in fields A and B, respectively. Cone index was 2.1 times higher in field A than in field B. When working in the reclaimed land, slip ratios were about 10.5% and 33.1% for fields A and B, respectively. The engine load was used almost 100% of all tractors under the two field conditions. Traction powers were 31.9 kW and 24.2 kW for fields A and B, respectively. Tractive efficiencies were 83.3% and 54.4% for fields A and B, respectively. As soil moisture increased by 16.4%, the tractive efficiency was lowered by about 28.9%. Traction performance of tractor was significantly different according to soil conditions of fields A and B. Therefore, it is necessary to improve the traction performance of tractor for smooth operations in all soil conditions including a reclaimed land by reflecting data of this study.

A Study for the Magnetic Loading and Electric Loading Ratio of AC Induction Motor for Traction Purpose (AC 견인용 유도전동기의 장하비에 관한 연구)

  • 권중록;박정태;이갑재;이정일;김기찬;이종인;김연달
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.674-679
    • /
    • 2000
  • Designing of the squirrel cage AC Traction Motor has many difficulties which has to be small size in order to be suitable into bogie frame, high efficiency and light weight. It means that induction motor for tractive purpose has to be different magnetic and electric loading ratio from industrial induction motor. This paper is devoted to an examination of how this ratio affects overall design concept and hence the main design points for traction motor. Also studied is tile changed coefficients of the magnetic and electric loading ratio squirrel cage induction motor for the traction purpose which has been already identified from tile reference book for industrial purpose induction motor.

  • PDF

A Study for the Magnetic and Electric Loading ratio of AC induction Motor for Traction Purpose (AC 견인전동기의 장하비 (裝荷比)에 관한 연구)

  • Kwon, J.L.;Park, J.T.;Lee, K.J.;Lee, J.Y.;Kim, K.C.;Lee, J.I.;Kim, Y.D.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.702-704
    • /
    • 2000
  • Designing of the squirrel cage AC Traction Motor has many difficulties which has to be small shape in order to be suitable into bogie frame, high efficiency and light weight. It means that induction motor for tractive efforts has to be different magnetic and electric loading ratio from industrial induction motor. This paper is devoted to an examination of how this ratio affects overall design concept and. hence the main design points for traction motor. Also studied is the changed coefficients of the magnetic and electric loading ratio squirrel cage induction motor for the traction purpose, which has been already identified from the referance book for industrial purpose induction motor.

  • PDF

A Study on Traction Prediction of Agricultural Tractor by Empirical Method (경험적 방법에 의한 트랙터의 견인력 예측에 관한 연구)

  • Lee, Dong-Hoon;Lee, Kyou-Seung;Park, Won-Yeop
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.297-304
    • /
    • 2009
  • This study was conducted to investigate the adequacy of the representative empirical models which are developed for predicting the tractive performance of the tractor operating in various soil conditions. Four representative empirical models which are widely used in the traction prediction of tractor were selected through literature review. Four models were Wismer-Luth, Brixius, Dwyer and Hernandez model, which were empirical traction models of a single wheel. The efficacy of four models were confirmed via comparison of the tractions of tractor predicted using the four models with those measured from traction tests which were conducted for two different driving type (2WD and 4WD) of the tractor on two different soil conditions. The results showed that tractions predicted by Brixius' model, especially for slip range under 20% which the operating efficiency of a tractor is very high, were well consistent with the ones measured from traction test better than the tractions predicted by models which are proposed by Wismer-Luth, Dwyer and Hernandez.

Development and Application of Evaluation Technique for Revetment for Nature-Friendly River Improvement (자연 친화적 하천정비를 위한 호안평가기법의 개발 및 적용)

  • Kim, Yun-Hwan;Park, Nam-Hee;Jin, Young-Hoon;Kim, Chul
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.12
    • /
    • pp.1007-1014
    • /
    • 2007
  • Recently, existing river improvement methods for flood control purpose have changed into nature friendly river improvement methods and the efforts to improve the river environment including river restoration have been made, and close-to-nature river improvement and nature friendly river restoration are actively conducted all over the country. In the present situation where various revetment methods are used after the introduction of the concept of close-to-nature river improvement, the environmental characteristics of rivers need to be considered to apply more suitable revetment methods. Therefore, as a precedent study for the development of revetment evaluation techniques and methods for close-to-nature river improvement, the present study suggested evaluation techniques using detailed survey items through field survey. Evaluation items of hydraulic stability consist of mode of streamline, stream bed gradient, flow velocity and tractive force ratio and those of environmental efficiency consist of revetment of vegetation, state of river water, land use of the terrace land on the river, vegetation and materials of the terrace land on the river. Each item was graded with the point 1 through 5. Hydraulic stability and environmental efficiency was evaluated by the points which were averaged in each items. As the result of the application of the proposed evaluation technique, it was found that a number of existing revetments excessively focus on hydraulic stability with little consideration about environmental term. It is expected that the proposed technique in the present study can be used as a base for providing guidelines to construct the design and construction of revetments in the future.

A Study on Balanced -type Oseillating Mole-Drainer(III)-Model Test for Draft Force, Torque, Power and Moment (평행식 진동탄환 암거 천공기의 연구(III)-견인력, 토크, 동력 및 모멘크에 관한 모형시험-)

  • 김용환
    • Journal of Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 1976
  • This paper is the third one of the study on balanced type oscillating mole-drainer, the first one was presented in No 9. Gyeongsang College Report and the second one in Vol. 17, No.4 of the KSAE. In the first part of this study, the characteristics of traction forces between the nonoscillating earth working equipments and oscillating ones was compared. A model of the balanced type oscillating mole-drainer, which composed of a mechanism that may reduce the machine vibration, was designed following the dimensional analysis and similitude technique. The model test was carried out to clarify the balancing mechanism of the oscillating parts and other parts of the machine. In the light of the results from the model tests, a prototype machine was made for experimental purpose. Results from the field test by a reported in the near future. In the second report, the model tests were carried out under the same soil conditions, i.e, . oscillating frequency, running velocity, and oscillating amplitude, etc. It was clear that use of balanced type oscillating model could substantially reduce the vibration of the whole system of the machine, when compared with the nonoscillating type model. In this paper(the third report), results of investigation on the traction force, power requirement, and moment. etc, is presented. Analysis of variance technique was used for analyzing the effect of the frequency, amplitude, and running velocity on the draft force, torque, power requirements, and moments. The results obtained from the model tests are as follows, 1) By practicing a balanced-type oscillating mole-drainer, it was possible to reduce the traction resistance by 55.1-61. 2 percent of traction resistance, however, was 1.75 - 1.95 times greater than the value of resistance which was induced by use of a mole-drainer with single bullet. The resistance of rear shank against soil was considered as a main causing factor of the above results. 2) As the oscillation frequency was increased, the traction resistance was decreased. Considering on the effect of oscillation the greater the amplitude, and the slower the running velocity was, the greater the reduction ratio of traction resistance was. 3) The ratio of the traction resistance of oscillating mole-drainer to that of non-oscillating one could be represented as a function of dimensionless variable (V/$Af$). The results from the tests were well agreed with the reported results from the experim ents on oscillation plow or hoe. 4) By taking a lower value of (V/$Af$), reducing the traction resistance was possible. This fact meant, however, that the efficiency of mole drain practice would be lower. 5) It was experimentally confirmed under the same condition of soil that the variable (R/$rD1^3$) could be represented as a function of a variable($V^2/gD$) when a non\ulcornerocillating mole-drainer was used. 6) When a oscillating mole-drainer was used, the variable(R/$rD_1^{3}$) could be represented as a function of two variables ($v^2/gD_1$) and (V^2/gD_1$). 7) The torque was not affected by a change of frequency. However, a relation of proportionality existed between torque and amplitude, running velocity, and ratio of bullet diameter. When a balanced type oscillating mole-drainer with two bullets was used, torque was increased by 52.8-78. 4 percent and total power requirement was also increased. 8) Total power requirement was increased linearly in accordance with the increasing frequency, 41.96 percent of total power was used for oscillating action. The magnitude of total power requirement was 1. 8-9. 4 times greater than that of a non-oscillating mechanism. In the view point of power requirement, it was not advisable to increase the frequency, amplitude, running velocity, and ratio of bullet diameter at the same time. 9) Only the positive moment occured in the rear shank. Change of the diameter of a rear bullet, could not affect the balancing against the soil resistance. It was necessary for rear bullet to have a large resistance against soil only when the rear bullet was in backward motion. 10) Within an extent of the experimental base, optimum limits for several design factors were A=0.5cm, $f$=22.5Hz, V=O. 05m/sec, and $\lambda$=1.0 By adapting these values traction resistance was reduced by 40 percent and vibration acceleration wa s reduced by 60 percent. Even though the total , power requirements for operating a balanced type oscillation mechanism was greater ~than that of non-oscillating one, using a oscillating mechanism would be more effective. Because a balanced type oscillating mechanism is used, tractive resistance will be reduced and then the lighter . tractive equipment could be used.

  • PDF

Numerical analysis of the morphological changes by sediment supply at the downstream channel of Youngju dam (댐 하류하천에서 유사공급에 의한 하도의 지형변화 수치모의 분석(영주댐을 중심으로))

  • Kang, Ki-Ho;Jang, Chnag-Lae;Lee, Gi Ha;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.8
    • /
    • pp.693-705
    • /
    • 2016
  • In this study, the effects of sediment supply on the downstream of a large dam are investigated using a numerical model. The model simulation shows a good agreement with laboratory experiment results of sediment transport and diffusion from sediment pulses. The water surface changes from the various sediment bed elevations are also simulated using the model. The site which has a relatively stiff bed slope and meandering of a channel is selected as an appropriate location for sediment supply because of its shear stress enough to supply the sediment downstream. The model simulation shows the decrease of channel bed elevation through the simulation period with time. The well-deposition of sediment supplied from the downstream of dam is found in the location where the flow rate is relatively low. A bed relief index is increased with time and it is relatively greater in downstream compared to upstream. The channel bed variability increases as flow rate increases with a greater bed relief index. The results of this study demonstrate the importance of increasing water discharge of a large dam to increase the dynamic of channel bed and thus to enhance the efficiency of channel bed restoration by sediment supply.