• Title/Summary/Keyword: Tracking of Several Moving Objects

Search Result 23, Processing Time 0.028 seconds

Estimation of Moving Information for Tracking of Moving Objects

  • Park, Jong-An;Kang, Sung-Kwan;Jeong, Sang-Hwa
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.300-308
    • /
    • 2001
  • Tracking of moving objects within video streams is a complex and time-consuming process. Large number of moving objects increases the time for computation of tracking the moving objects. Because of large computations, there are real-time processing problems in tracking of moving objects. Also, the change of environment causes errors in estimation of tracking information. In this paper, we present a new method for tracking of moving objects using optical flow motion analysis. Optical flow represents an important family of visual information processing techniques in computer vision. Segmenting an optical flow field into coherent motion groups and estimating each underlying motion are very challenging tasks when the optical flow field is projected from a scene of several moving objects independently. The problem is further complicated if the optical flow data are noisy and partially incorrect. Optical flow estimation based on regulation method is an iterative method, which is very sensitive to the noisy data. So we used the Combinatorial Hough Transform (CHT) and Voting Accumulation for finding the optimal constraint lines. To decrease the operation time, we used logical operations. Optical flow vectors of moving objects are extracted, and the moving information of objects is computed from the extracted optical flow vectors. The simulation results on the noisy test images show that the proposed method finds better flow vectors and more correctly estimates the moving information of objects in the real time video streams.

  • PDF

Effective Covariance Tracker based on Adaptive Foreground Segmentation in Tracking Window (적응적인 물체분리를 이용한 효과적인 공분산 추적기)

  • Lee, Jin-Wook;Cho, Jae-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.766-770
    • /
    • 2010
  • In this paper, we present an effective covariance tracking algorithm based on adaptive size changing of tracking window. Recent researches have advocated the use of a covariance matrix of object image features for tracking objects instead of the conventional histogram object models used in popular algorithms. But, according to the general covariance tracking algorithm, it can not deal with the scale changes of the moving objects. The scale of the moving object often changes in various tracking environment and the tracking window(or object kernel) has to be adapted accordingly. In addition, the covariance matrix of moving objects should be adaptively updated considering of the tracking window size. We provide a solution to this problem by segmenting the moving object from the background pixels of the tracking window. Therefore, we can improve the tracking performance of the covariance tracking method. Our several simulations prove the effectiveness of the proposed method.

Livestock Theft Detection System Using Skeleton Feature and Color Similarity (골격 특징 및 색상 유사도를 이용한 가축 도난 감지 시스템)

  • Kim, Jun Hyoung;Joo, Yung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.586-594
    • /
    • 2018
  • In this paper, we propose a livestock theft detection system through moving object classification and tracking method. To do this, first, we extract moving objects using GMM(Gaussian Mixture Model) and RGB background modeling method. Second, it utilizes a morphology technique to remove shadows and noise, and recognizes moving objects through labeling. Third, the recognized moving objects are classified into human and livestock using skeletal features and color similarity judgment. Fourth, for the classified moving objects, CAM (Continuously Adaptive Meanshift) Shift and Kalman Filter are used to perform tracking and overlapping judgment, and risk is judged to generate a notification. Finally, several experiments demonstrate the feasibility and applicability of the proposed method.

An intelligent video security system for the tracking of multiple moving objects (복수의 동체 추적을 위한 지능형 영상보안 시스템)

  • Kim, Byung-Chul
    • Journal of Digital Convergence
    • /
    • v.11 no.10
    • /
    • pp.359-366
    • /
    • 2013
  • Due to the development and market expansion of image analysis and recognition technology, video security such as CCTV cameras and digital storage devices, are required for real-time monitoring systems and intelligent video security systems. This includes the development of more advanced technologies. A rotatable PTZ camera, in a CCTV camera system, has a zoom function so you can acquire a precise picture. However it can cause blind spots, and can not monitor two or more moving objects at the same time. This study concerns, the intelligent tracking of multiple moving objects, CCTV systems, and methods of video surveillance. An intelligent video surveillance system is proposed. It can accurately shoot broad areas and track multiple objects at the same time, much more effectively than using one fixed camera for an entire area or two or more PTZ cameras.

Livestock Anti-theft System Using Morphological Feature-based Model (형태학적 특징 기반 모델을 이용한 가축 도난 판단 시스템)

  • Kim, Jun Hyoung;Joo, Yung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.578-585
    • /
    • 2018
  • In this paper, we propose a classification and theft detection system for human and livestock for various moving objects in a barn. To do this, first, we extract the moving objects using the GMM method. Second, the noise generated when extracting the moving object is removed, and the moving object is recognized through the labeling method. And we propose a method to classify human and livestock using model formation and color for the unique form of the detected moving object. In addition, we propose a method of tracking and overlapping the classified moving objects using Kalman filter. Through this overlap determination method, an event notifying a dangerous situation is generated and a theft determination system is constructed. Finally, we demonstrate the feasibility and applicability of the proposed system through several experiments.

Feature-based Object Tracking using an Active Camera (능동카메라를 이용한 특징기반의 물체추적)

  • 정영기;호요성
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.694-701
    • /
    • 2004
  • In this paper, we proposed a feature-based tracking system that traces moving objects with a pan-tilt camera after separating the global motion of an active camera and the local motion of moving objects. The tracking system traces only the local motion of the comer features in the foreground objects by finding the block motions between two consecutive frames using a block-based motion estimation and eliminating the global motion from the block motions. For the robust estimation of the camera motion using only the background motion, we suggest a dominant motion extraction to classify the background motions from the block motions. We also propose an efficient clustering algorithm based on the attributes of motion trajectories of corner features to remove the motions of noise objects from the separated local motion. The proposed tracking system has demonstrated good performance for several test video sequences.

Feature based Object Tracking from an Active Camera (능동카메라 환경에서의 특징기반의 이동물체 추적)

  • 오종안;정영기
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.141-144
    • /
    • 2002
  • This paper describes a new feature based tracking system that can track moving objects with a pan-tilt camera. We extract corner features of the scene and tracks the features using filtering, The global motion energy caused by camera movement is eliminated by finding the maximal matching position between consecutive frames using Pyramidal template matching. The region of moving object is segmented by clustering the motion trajectories and command the pan-tilt controller to follow the object such that the object will always lie at the center of the camera. The proposed system has demonstrated good performance for several video sequences.

  • PDF

Tracking and Recognition of vehicle and pedestrian for intelligent multi-visual surveillance systems (지능형 다중 화상감시시스템을 위한 움직이는 물체 추적 및 보행자/차량 인식 방법)

  • Lee, Saac;Cho, Jae-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.435-442
    • /
    • 2015
  • In this paper, we propose a tracking and recognition of pedestrian/vehicle for intelligent multi-visual surveillance system. The intelligent multi-visual surveillance system consists of several fixed cameras and one calibrated PTZ camera, which automatically tracks and recognizes the detected moving objects. The fixed wide-angle cameras are used to monitor large open areas, but the moving objects on the images are too small to view in detail. But, the PTZ camera is capable of increasing the monitoring area and enhancing the image quality by tracking and zooming in on a target. The proposed system is able to determine whether the detected moving objects are pedestrian/vehicle or not using the SVM. In order to reduce the tracking error, an improved camera calibration algorithm between the fixed cameras and the PTZ camera is proposed. Various experimental results show the effectiveness of the proposed system.

Active Object Tracking using Image Mosaic Background

  • Jung, Young-Kee;Woo, Dong-Min
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.1
    • /
    • pp.52-57
    • /
    • 2004
  • In this paper, we propose a panorama-based object tracking scheme for wide-view surveillance systems that can detect and track moving objects with a pan-tilt camera. A dynamic mosaic of the background is progressively integrated in a single image using the camera motion information. For the camera motion estimation, we calculate affine motion parameters for each frame sequentially with respect to its previous frame. The camera motion is robustly estimated on the background by discriminating between background and foreground regions. The modified block-based motion estimation is used to separate the background region. Each moving object is segmented by image subtraction from the mosaic background. The proposed tracking system has demonstrated good performance for several test video sequences.

A Modified Expansion-Contraction Method for Mobile Object Tracking in Video Surveillance: Indoor Environment

  • Kang, Jin-Shig
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.298-306
    • /
    • 2013
  • Recent years have witnessed a growing interest in the fields of video surveillance and mobile object tracking. This paper proposes a mobile object tracking algorithm. First, several parameters such as object window, object area, and expansion-contraction (E-C) parameter are defined. Then, a modified E-C algorithm for multiple-object tracking is presented. The proposed algorithm tracks moving objects by expansion and contraction of the object window. In addition, it includes methods for updating the background image and avoiding occlusion of the target image. The validity of the proposed algorithm is verified experimentally. For example, the first scenario traces the path of two people walking in opposite directions in a hallway, whereas the second one is conducted to track three people in a group of four walkers.