• Title/Summary/Keyword: Tracking moving object

Search Result 530, Processing Time 0.024 seconds

Object Tracking Using Template Based on Adaptive 3-Frame Difference (적응적 3 프레임 차분 방법 기반 템플릿을 이용한 객체 추적)

  • Kim, Hun-Ki;Lee, Jin-Hyung;Cho, Seong-Won;Chung, Sun-Tae;Kim, Jae-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.349-354
    • /
    • 2007
  • To generate the template of a detected object and to track the overlapped object and the object covered by other objects correctly are important research problems in visual surveillance. The frame difference is not capable of generating the template of slowly moving object. To get around the drawback of the conventional frame difference, we propose a new algorithm for generating a template using adaptive 3-frame difference.

A Study on target tracking system for a mobile robot using ultrasonic sensors

  • Kim, Hon-Hui;Han, Dong-Hui;Ha, Yun-Su
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.134.5-134
    • /
    • 2001
  • The capability of environment recognition is very important for mobile robot. Especially, a function of target tracking is necessary in monitoring and watching an object using mobile robot. In general, vision sensors such as CCD camera and laser range finder were used for tracking of a moving target. However, they are not only affected by intensity of illumination in environment but also require high performance processors to process large amount of data. Therefore, in this paper, we propose the construction of target tracking system for mobile robot using only ultrasonic sensors to cope with these problems.

  • PDF

Design and Implementation of e-Logistics System supporting Efficient Moving Objects Trajectory Management (효율적인 차량 궤적 관리를 지원하는 물류관리시스템의 설계 및 구현)

  • Lee, Eung-Jae;Nam, Kwang-Woo;Ryu, Keun-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.30-41
    • /
    • 2006
  • This paper proposes an e-logistics system supporting efficient vehicle moving trajectory management. Recent advances in wireless communications have given rise to a number of location-based services including logistics vehicle tracking, cellular phone user's location finding, and location-based commerce. Logistics systems typically entail tracking vehicles for purposes of the logistics center knowing the whereabouts of the vehicles and/or consignments. Moreover, storing and managing location trajectory of continuously moving vehicles and consignments is necessary for supporting efficient logistics plan and consignment. The proposed system is able to manage spatial objects in GIS as well as logistic information in the mobile environment. And for the efficiently managing and retrieving of transporting trajectory of logistics, we extend previous moving object indexing method, TB-Tree, to use multi-version framework and evaluate data updating performance. It is able to apply the proposed method to develop mobile contents services based on continuously changing location of moving object in the mobile environment.

  • PDF

Controller Design for Object Tracking with an Active Camera (능동 카메라 기반의 물체 추적 제어기 설계)

  • Youn, Su-Jin;Choi, Goon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.83-89
    • /
    • 2011
  • In the case of the tracking system with an active camera, it is very difficult to guarantee real-time processing due to the attribute of vision system which handles large amounts of data at once and has time delay to process. The reliability of the processed result is also badly influenced by the slow sampling time and uncertainty caused by the image processing. In this paper, we figure out dynamic characteristics of pixels reflected on the image plane and derive the mathematical model of the vision tracking system which includes the actuating part and the image processing part. Based on this model, we find a controller that stabilizes the system and enhances the tracking performance to track a target rapidly. The centroid is used as the position index of moving object and the DC motor in the actuating part is controlled to keep the identified centroid at the center point of the image plane.

Moving Object Trajectory based on Kohenen Network for Efficient Navigation of Mobile Robot

  • Jin, Tae-Seok
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.119-124
    • /
    • 2009
  • In this paper, we propose a novel approach to estimating the real-time moving trajectory of an object is proposed in this paper. The object's position is obtained from the image data of a CCD camera, while a state estimator predicts the linear and angular velocities of the moving object. To overcome the uncertainties and noises residing in the input data, a Extended Kalman Filter(EKF) and neural networks are utilized cooperatively. Since the EKF needs to approximate a nonlinear system into a linear model in order to estimate the states, there still exist errors as well as uncertainties. To resolve this problem, in this approach the Kohonen networks, which have a high adaptability to the memory of the input-output relationship, are utilized for the nonlinear region. In addition to this, the Kohonen network, as a sort of neural network, can effectively adapt to the dynamic variations and become robust against noises. This approach is derived from the observation that the Kohonen network is a type of self-organized map and is spatially oriented, which makes it suitable for determining the trajectories of moving objects. The superiority of the proposed algorithm compared with the EKF is demonstrated through real experiments.

Background memory-assisted zero-shot video object segmentation for unmanned aerial and ground vehicles

  • Kimin Yun;Hyung-Il Kim;Kangmin Bae;Jinyoung Moon
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.795-810
    • /
    • 2023
  • Unmanned aerial vehicles (UAV) and ground vehicles (UGV) require advanced video analytics for various tasks, such as moving object detection and segmentation; this has led to increasing demands for these methods. We propose a zero-shot video object segmentation method specifically designed for UAV and UGV applications that focuses on the discovery of moving objects in challenging scenarios. This method employs a background memory model that enables training from sparse annotations along the time axis, utilizing temporal modeling of the background to detect moving objects effectively. The proposed method addresses the limitations of the existing state-of-the-art methods for detecting salient objects within images, regardless of their movements. In particular, our method achieved mean J and F values of 82.7 and 81.2 on the DAVIS'16, respectively. We also conducted extensive ablation studies that highlighted the contributions of various input compositions and combinations of datasets used for training. In future developments, we will integrate the proposed method with additional systems, such as tracking and obstacle avoidance functionalities.

A Framework for Object Detection by Haze Removal (안개 제거에 의한 객체 검출 성능 향상 방법)

  • Kim, Sang-Kyoon;Choi, Kyoung-Ho;Park, Soon-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.168-176
    • /
    • 2014
  • Detecting moving objects from a video sequence is a fundamental and critical task in video surveillance, traffic monitoring and analysis, and human detection and tracking. It is very difficult to detect moving objects in a video sequence degraded by the environmental factor such as fog. In particular, the color of an object become similar to the neighbor and it reduces the saturation, thus making it very difficult to distinguish the object from the background. For such a reason, it is shown that the performance and reliability of object detection and tracking are poor in the foggy weather. In this paper, we propose a novel method to improve the performance of object detection, combining a haze removal algorithm and a local histogram-based object tracking method. For the quantitative evaluation of the proposed system, information retrieval measurements, recall and precision, are used to quantify how well the performance is improved before and after the haze removal. As a result, the visibility of the image is enhanced and the performance of objects detection is improved.

Development of Auto Tracking System for Baseball Pitching (투구된 공의 실시간 위치 자동추적 시스템 개발)

  • Lee, Ki-Chung;Bae, Sung-Jae;Shin, In-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.81-90
    • /
    • 2007
  • The effort identifying positioning information of the moving object in real time has been a issue not only in sport biomechanics but also other academic areas. In order to solve this issue, this study tried to track the movement of a pitched ball that might provide an easier prediction because of a clear focus and simple movement of the object. Machine learning has been leading the research of extracting information from continuous images such as object tracking. Though the rule-based methods in artificial intelligence prevailed for decades, it has evolved into the methods of statistical approach that finds the maximum a posterior location in the image. The development of machine learning, accompanied by the development of recording technology and computational power of computer, made it possible to extract the trajectory of pitched baseball from recorded images. We present a method of baseball tracking, based on object tracking methods in machine learning. We introduce three state-of-the-art researches regarding the object tracking and show how we can combine these researches to yield a novel engine that finds trajectory from continuous pitching images. The first research is about mean shift method which finds the mode of a supposed continuous distribution from a set of data. The second research is about the research that explains how we can find the mode and object region effectively when we are given the previous image's location of object and the region. The third is about the research of representing data into features that we can deal with. From those features, we can establish a distribution to generate a set of data for mean shift. In this paper, we combine three works to track baseball's location in the continuous image frames. From the information of locations from two sets of images, we can reconstruct the real 3-D trajectory of pitched ball. We show how this works in real pitching images.

Object Tracking And Elimination Using Lod Edge Maps Generated from Modified Canny Edge Maps (수정된 캐니 에지 맵으로부터 만들어진 LOD 에지 맵을 이용한 물체 추적 및 소거)

  • Park, Ji-Hun;Jang, Yung-Dae;Lee, Dong-Hun;Lee, Jong-Kwan;Ham, Mi-Ok
    • The KIPS Transactions:PartB
    • /
    • v.14B no.3 s.113
    • /
    • pp.171-182
    • /
    • 2007
  • We propose a simple method for tracking a nonparameterized subject contour in a single video stream with a moving camera and changing background. Then we present a method to eliminate the tracked contour object by replacing with the background scene we get from other frame. First we track the object using LOD (Level-of-Detail) canny edge maps, then we generate background of each image frame and replace the tracked object in a scene by a background image from other frame that is not occluded by the tracked object. Our tracking method is based on level-of-detail (LOD) modified Canny edge maps and graph-based routing operations on the LOD maps. We get more edge pixels along LOD hierarchy. Our accurate tracking is based on reducing effects from irrelevant edges by selecting the stronger edge pixels, thereby relying on the current frame edge pixel as much as possible. The first frame background scene is determined by camera motion, camera movement between two image frames, and other background scenes are computed from the previous background scenes. The computed background scenes are used to eliminate the tracked object from the scene. In order to remove the tracked object, we generate approximated background for the first frame. Background images for subsequent frames are based on the first frame background or previous frame images. This approach is based on computing camera motion. Our experimental results show that our method works nice for moderate camera movement with small object shape changes.

A Study on Rendezvous Point between the Mobile Robot and Predicted Moving Objects (경로예측이 가능한 이동물체와 이동로봇간의 Rendezvous Point에 관한 연구)

  • Youn, Jung-Hoon;Lee, Kee-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.84-86
    • /
    • 2001
  • A new navigation method is developed and implemented for mobile robot. The mobile robot navigation problem has traditionally been decomposed into the path planning and path following. Unlike tracking-based system, which minimize intercept time and moved mobile robot distance for optimal rendezvous point selection. To research of random moving object uses algorithm of Adaptive Control using Auto-regressive Model. A fine motion tracking object's trajectory is predicted of Auto-regressive Algorithm. Thus, the mobile robot can travel faster than the target wi thin the robot's workspace. The can select optimal rendezvous point of various intercept time.

  • PDF