• Title/Summary/Keyword: Tracking controller

Search Result 1,726, Processing Time 0.029 seconds

Integrated Controller Design for Multi-Axis CNC Systems (다축 CNC 시스템의 통합형 제어기 설계)

  • Lee Hak-Chul;Jee Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.93-102
    • /
    • 2006
  • This paper proposes a controller design analysis for three-axis CNC systems considering both contouring and tracking performance. The proposed analysis inclusively combines axial controllers for each individual feed drive system together with cross-coupling controller at the beginning design stage as an integrated manner. These two controllers used to be separately designed and analyzed since they have different control objectives. The proposed scheme includes a stability analysis for the overall control system and a performance analysis in terms of contouring and tracking accuracy. Computer simulation is performed and the results show the validity of the proposed methodology. Further, the results can be used as a basic guideline in systematic and comprehensive controller design for multi-axis CNC systems.

A Robust Controller Design for Robot Manipulators with Hydraulic Actuator Dynamics (유압구동기를 채용한 로봇 매니플레이터에 대한 강인제어기 설계)

  • Park, Gwang-Seok;Hwang, Dong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.598-600
    • /
    • 1998
  • In this paper, a robust controller is proposed to achieve the accurate tracking for uncertain robot manipulators with hydraulic actuator dynamics. The parameter uncertainty can be quantified by the linear parameterization technique. A switching controller is proposed to guarantee the global asymptotic stability of the plant. In order to eliminate the chattering caused by the switching controller, a smoothing controller is proposed using the boundary layer technique around the sliding surface. It is shown that the smoothing controller guarantees the uniform ultimate boundedness of the tracking, error. The proposed controller shows good better tracking performance.

  • PDF

Design of Fuzzy PD+I Controller Based on PID Controller

  • Oh, Sea-June;Yoo, Heui-Han;Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.34 no.2
    • /
    • pp.117-122
    • /
    • 2010
  • Since fuzzy controllers are nonlinear, it is more difficult to set the controller gains and to analyse the stability compared to conventional PID controllers. This paper proposes a fuzzy PD+I controller for tracking control which uses a linear fuzzy inference(product-sum-gravity) method based on a conventional linear PID controller. In this scheme the fuzzy PD+I controller works similar to the control performance as the linear PD plus I(PD+I) controller. Thus it is possible to analyse and design an fuzzy PD+I controller for given systems based on a linear fuzzy PD controller. The scaling factors tuning scheme, another topic of fuzzy controller design procedure, is also introduced in order to fine performance of the fuzzy PD+I controller. The scaling factors are adjusted by a real-coded genetic algorithm(RCGA) in off-line. The simulation results show the effectiveness of the proposed fuzzy PD+I controller for tracking control problems by comparing with the conventional PID controllers.

Design fuzzy-genetic controller for path tracking in wheeled-mobile robot (구륜 이동 로보트의 경로 추적을 위한 Fuzzy-Genetic Controller 설계)

  • 김상원;김성희;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.512-515
    • /
    • 1997
  • In this paper the fuzzy-genetic controller for path-tracking of WMRs is proposed. Fuzzy controller is implemented to adaptive adjust the crossover rate and mutation rate, and genetic algorithm is implemented to adaptive adjust the control gain during the optimization. The computer simulation shows that the proposed fuzzy-genetic controller is effective.

  • PDF

A Study on Tracking Control of an Industrial Overhead Crane Using Sliding Mode Controller (슬라이딩모드 제어기를 이용한 산업용 천정크레인의 추종제어에 관한 연구)

  • Park, Byung-Suk;Yoon, Ji-Sup;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.1022-1032
    • /
    • 2000
  • We propose a sliding mode controller tracking the states of a time-varying reference model. The reference model generates the desired trajectories of the states, and the sliding mode controller regulates robustly the errors between the desired states and the measured states. We apply this controller to the overhead crane. Its reference model generates the trajectories of the damped-out swing angle and the swing angular velocity to suppress the swinging motion caused by the acceleration and the deceleration of crane transportation. Also, this model generates the desired trajectories of the position and velocity of the crane. The crane model is identified from the experimental data using an orthogonal function. Kalman filtering is applied to estimate the crane states. The designed controller is simulated on a computer and is tested through a 2-ton industrial overhead crane using the vector-controlled servo motor system. It is verified that, from the simulated and experimental results, the sliding mode controller tracking a time-varying reference model works well.

  • PDF

Fuzzy PID Control by Grouping of Membership Functions of Fuzzy Antecedent Variables with Neutrosophic Set Approach and 3-D Position Tracking Control of a Robot Manipulator

  • Can, Mehmet Serhat;Ozguven, Omerul Faruk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.969-980
    • /
    • 2018
  • This paper aims to design of the neutrosophic fuzzy-PID controller and it has been compared with the conventional fuzzy-PID controller for position tracking control in terms of robustness. In the neutrosophic fuzzy-PID controller, error (e) and change of error (ce) were assessed separately on two fuzzy inference systems (FISs). In this study, the designed method is different from the conventional fuzzy logic controller design, membership degrees of antecedent variables were determined by using the T(true), I(indeterminacy), and F(false) membership functions. These membership functions are grouped on the universe of discourse with the neutrosophic set approach. These methods were tested on three-dimensional (3-D) position-tracking control application of a spherical robot manipulator in the MATLAB Simulink. In all tests, reference trajectory was defined for movements of all axes of the robot manipulator. According to the results of the study, when the moment of inertia of the rotor is changed, less overshoot ratio and less oscillation are obtained in the neutrosophic fuzzy-PID controller. Thus, our suggested method is seen to be more robust than the fuzzy-PID controllers.

Robust Tracking Control Based on Intelligent Sliding-Mode Model-Following Position Controllers for PMSM Servo Drives

  • El-Sousy Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.159-173
    • /
    • 2007
  • In this paper, an intelligent sliding-mode position controller (ISMC) for achieving favorable decoupling control and high precision position tracking performance of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The intelligent position controller consists of a sliding-mode position controller (SMC) in the position feed-back loop in addition to an on-line trained fuzzy-neural-network model-following controller (FNNMFC) in the feedforward loop. The intelligent position controller combines the merits of the SMC with robust characteristics and the FNNMFC with on-line learning ability for periodic command tracking of a PMSM servo drive. The theoretical analyses of the sliding-mode position controller are described with a second order switching surface (PID) which is insensitive to parameter uncertainties and external load disturbances. To realize high dynamic performance in disturbance rejection and tracking characteristics, an on-line trained FNNMFC is proposed. The connective weights and membership functions of the FNNMFC are trained on-line according to the model-following error between the outputs of the reference model and the PMSM servo drive system. The FNNMFC generates an adaptive control signal which is added to the SMC output to attain robust model-following characteristics under different operating conditions regardless of parameter uncertainties and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode position controller. The results confirm that the proposed ISMC grants robust performance and precise response to the reference model regardless of load disturbances and PMSM parameter uncertainties.

Three-dimensional trajectory tracking for underactuated AUVs with bio-inspired velocity regulation

  • Zhou, Jiajia;Ye, Dingqi;Zhao, Junpeng;He, Dongxu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.282-293
    • /
    • 2018
  • This paper attempts to address the motion parameter skip problem associated with three-dimensional trajectory tracking of an underactuated Autonomous Underwater Vehicle (AUV) using backstepping-based control, due to the unsmoothness of tracking trajectory. Through kinematics concepts, a three-dimensional dynamic velocity regulation controller is derived. This controller makes use of the surge and angular velocity errors with bio-inspired models and backstepping techniques. It overcomes the frequently occurring problem of parameter skip at inflection point existing in backstepping tracking control method and increases system robustness. Moreover, the proposed method can effectively avoid the singularity problem in backstepping control of virtual velocity error. The control system is proved to be uniformly ultimately bounded using Lyapunov stability theory. Simulation results illustrate the effectiveness and efficiency of the developed controller, which can realize accurate three-dimensional trajectory tracking for an underactuated AUV with constant external disturbances.

Design of Continuous Variable Structure Tracking Controller With Prescribed Performance for Brushless Direct Drive Drive Servo Motor

  • Lee, Jung-Hoon
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.58-66
    • /
    • 1998
  • A continuous, accurate, and robust variable structure tracking controller(CVSTC) is designed for brushless direct drive servo motors(BLDDSM). Although conventional variable structure controls can give the desired tracking performances, there exists an inevitable chattering problems in control input which is undesirable for direct drive systems. With the presented algorithm, not only the chattering problems are removed by using the efficient compensation of the disturbance observer, but also the prescribed tracking trajectory can be obtained using the sliding dynamics when an initial of the desired trajcetory is different from that of a BLDDSM. The design of the sliding mode tracking controller for the prescribed, accurate, and robust tracking performance without the chattering problem is given based on the results of the detailed stability analysis. The usefulness of the suggested algorithm is demonstrated through the computer simulation for a BLDDSM under load variations.

  • PDF

Robust Current Tracking Control of Switched Reluctance Motors (Switched Reluctance Motor의 견실한 전류추적 제어기 설계)

  • Kim, Chang-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.218-228
    • /
    • 2001
  • The switched reluctance motor(SRM) has been increasingly used in high-performance servo applications such as electric vehicles, aircraft, and direct-drive robots. The dynamic equations of SRMs are, however, highly nonlinear and this makes it difficult to control SRMs with high performance. In this paper, we propose a new robust current tracking controller for SAMs which can compensate the nonlinear characteristics of SRM(i.e., back-emf and inductance) completely and hence shows perfect tracking performance even with an arbitrary small current control loop gain. Furthermore, even in case that there exist some model uncertainties, our current controller guarantees that the stator currents can track the reference current commands with sufficiently small tracking errors. In order to justify our work, we present the tracking performance analysis and some simulation results.

  • PDF