• Title/Summary/Keyword: Track While Scan

Search Result 14, Processing Time 0.022 seconds

A Study on the Improvement of Naval Surveillance Radar to Solve the Target Display Problem (함정용 탐색레이더의 표적 전시상태 개선에 관한 연구)

  • Sim, Min-Seop;Lee, Ji-Hyeog;Jeong, Hyeon-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.541-546
    • /
    • 2020
  • The surveillance radar for naval ships is an essential equipment of a battle system that executes the detection and tracking of targets, and the shooting support function; it calculates the three-dimensional track of the target range, azimuth, and altitude to carry out its duty. The surveillance radar consists of an antenna, a transceiver, a processing unit, and an air dryer section. The radar radiates the transmission signal on the antenna section, receives the reflected signal from the target, and amplifies the signals on the transceiver section. The signal received from the antenna is used to provide the operator with target information in various ways. This study identified the display problems when the information about the target is displayed through the radar. The causes of the problems were analyzed and improved. The tracking disappearance phenomenon caused by the altered-course of the ship was improved on the TWS tracking algorithm. The validity of the improved TWS tracking algorithm was confirmed by the normal condition of the target status on the B-scope.

GMTI Two Channel Raw Data Processing and Analysis (GMTI 2채널 원시데이터 처리 및 분석)

  • Kim, So-Yeon;Yoon, Sang-Ho;Shin, Hyun-Ik;Youn, Jae-Hyuk;Kim, Jin-Woo;You, Eung-Noh
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.847-855
    • /
    • 2018
  • GMTI (Ground Moving Target Indicator) is a kind of airborne radar function that is used widely in military applications to detect the moving targets on the ground. In this paper, GMTI signal processing technique was presented and its performance was verified using sum and difference channels raw data obtained by the captive flight test.

Development of High-Speed Real-Time Signal Processing for 3D Surveillance Radar (3차원 탐색 레이더용 고속 실시간 신호처리기 개발)

  • Bae, Jun-Woo;Kim, Bong-Jae;Choi, Jae-Hung;Jeong, Lae-Hyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.737-747
    • /
    • 2013
  • A 3-D surveillance radar is a pulsed-doppler radar to provide various target information, such as range, doppler and angle by performing TWS. This paper introduces HW/SW architecture of radar signal processing board to process in real-time using high-speed multiple DSP(Digital Signal Processor) based on COTS. Moreover, we introduced a implemented algorithm consisted of clutter map creation/renewal, FIR(Finite Impulse Response) filter for rejection of zero velocity components, doppler filter, hybrid CFAR and finally presented computational burden of each algorithm by performing operational test using a beacon.

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF