• Title/Summary/Keyword: Track Recognition

Search Result 190, Processing Time 0.028 seconds

Human Legs Stride Recognition and Tracking based on the Laser Scanner Sensor Data (레이저센서 데이터융합기반의 복수 휴먼보폭 인식과 추적)

  • Jin, Taeseok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.247-253
    • /
    • 2019
  • In this paper, we present a new method for real-time tracking of human walking around a laser sensor system. The method converts range data with $r-{\theta}$ coordinates to a 2D image with x-y coordinates. Then human tracking is performed using human's features, i.e. appearances of human walking pattern, and the input range data. The laser sensor based human tracking method has the advantage of simplicity over conventional methods which extract human face in the vision data. In our method, the problem of estimating 2D positions and orientations of two walking human's ankle level is formulated based on a moving trajectory algorithm. In addition, the proposed tracking system employs a HMM to robustly track human in case of occlusions. Experimental results using a real system demonstrate usefulness of the proposed method.

A study on implementation of adult learner-targed college based on case study of foreign universities: Focused on cases of US and UK (해외 사례분석을 통한 성인전담 단과대학 운영방안: 미국과 영국 대학을 중심으로)

  • CHO, DAEYEON;Kim, Jeong-Ju
    • (The)Korea Educational Review
    • /
    • v.23 no.1
    • /
    • pp.379-404
    • /
    • 2017
  • The purpose of this study is to seek practical implementation of adult learner-targeted college. For this, it first of all pointed out expanding opportunities of adult learners to learn and limitation of current lifelong education system at higher education level as well as lifelong learning centered university project. Then it selected and examined 3 university cases abroad, such as Harvard university, the university of Chicago in US and Warwick university in UK in terms of their curriculum and operating method for adult learners. In addition to the literature and case studies, this study did interviews on 5 professors with major of lifelong education and 5 managerial experts of university to suggest practical operating approach of adult learner-targeted college, which is as following. University's philosophy should be geared to meet public responsibility, specialization and persistency of the system and proper measurement be followed such as various range of admission track, prior education courses, recognition of prior learning experience, major, teaching method, curriculum and extra adult learner tailored service including financial support. Based on the study result, practical implications were suggested.

Unauthorized person tracking system in video using CNN-LSTM based location positioning

  • Park, Chan;Kim, Hyungju;Moon, Nammee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.77-84
    • /
    • 2021
  • In this paper, we propose a system that uses image data and beacon data to classify authorized and unauthorized perosn who are allowed to enter a group facility. The image data collected through the IP camera uses YOLOv4 to extract a person object, and collects beacon signal data (UUID, RSSI) through an application to compose a fingerprinting-based radio map. Beacon extracts user location data after CNN-LSTM-based learning in order to improve location accuracy by supplementing signal instability. As a result of this paper, it showed an accuracy of 93.47%. In the future, it can be expected to fusion with the access authentication process such as QR code that has been used due to the COVID-19, track people who haven't through the authentication process.

Development of contents based on virtual environment of basic physics education (기초 물리 교육목적의 가상환경 기반 콘텐츠 개발 및 활용)

  • Jaeyoon Lee;Tackhee Lee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.149-158
    • /
    • 2023
  • HMD, which is applied with the latest technology, minimizes motion sickness with high-resolution displays and fast motion recognition, and can accurately track location and motion. This can provide an environment where you can immerse yourself in a virtual three-dimensional space, and virtual reality contents such as disaster simulators and high-risk equipment learning spaces are developing using these characteristics. These advantages are also applicable in the field of basic science education. In particular, expanding the concepts of electric and magnetic fields in physics described by existing two-dimensional data into three-dimensional spaces and visualizing them in real time can greatly help improve learning understanding. In this paper, realistic physical education environments and contents based on three-dimensional virtual reality are developed and the developed learning contents are experienced by actual learning subjects to prove their effectiveness. A total of 46 middle school and college students were taught and experienced in real time the electric and magnetic fields expressed in three dimensions in a virtual reality environment. As a result of the survey, more than 85% of positive responses were obtained, and positive results were obtained that three-dimensional virtual space-based physical learning could be effectively applied.

Assessment and Support Measures of Academic Journals in the National Open Access Platform AccessON

  • Hyekyong Hwang;Eun Jee Lee;Wan Jong Kim;Jin Ho Park
    • Journal of Information Science Theory and Practice
    • /
    • v.12 no.3
    • /
    • pp.75-88
    • /
    • 2024
  • This study aims to assess the maturity of Korean open access (OA) journals using the OA infrastructure provided by the Korea Institute of Science and Technology Information, and develop necessary strategies for future improvement. The assessment model consists of three dimensions, 12 items, and 24 sub-items. The importance of the three dimensions (A: OA policy establishment and disclosure, B: OA sustainability, and C: Journal openness quality) was differentiated by the Analytic Hierarchy Process, and the maturity stages were divided into five levels (Entry, Growth1, Growth2, Maturity1, and Maturity2). The assessment was carried out twice for 100 academic journals. The results indicated that the proportion of journals at or above the Growth1 level increased by 11% to reach 83% during the second assessment phase, which could be owing to the learnings of the first assessment. Following expert consultations on the assessment results, three support measures were identified to activate OA. The first includes OA promotion and education activities, which involve creating standard regulations and guidelines, and advancing educational activities for societies that are either preparing for or currently implementing OA. The second involves providing support for technical aspects, such as identifiers, XMLization, and copyright management, through peer review and OA publishing platforms. The third includes collaborative activities to enhance journal evaluations and the recognition criteria for researchers' achievements in OA journals, and fostering cooperation with national and research and development institutions for financial support.

Enhancing Automated Multi-Object Tracking with Long-Term Occlusions across Consecutive Frames for Heavy Construction Equipment

  • Seongkyun AHN;Seungwon SEO;Choongwan KOO
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1311-1311
    • /
    • 2024
  • Recent advances in artificial intelligence technology have led to active research aimed at systematically managing the productivity and environmental impact of major management targets such as heavy equipment at construction sites. However, challenges arise due to phenomena like partial occlusions, resulting from the dynamic working environment of construction sites (e.g., equipment overlapping, obstruction by structures), which impose practical constraints on precisely monitoring heavy equipment. To address these challenges, this study aims to enhance automated multi-object tracking (MOT) in scenarios involving long-term occlusions across consecutive frames for heavy construction equipment. To achieve this, two methodologies are employed to address long-term occlusions at construction sites: (i) tracking-by-detection and (ii) video inpainting with generative adversarial networks (GANs). Firstly, this study proposes integrating FairMOT with a tracking-by-detection algorithm like ByteTrack or SMILEtrack, demonstrating the robustness of re-identification (Re-ID) in occlusion scenarios. This method maintains previously assigned IDs when heavy equipment is temporarily obscured and then reappears, analyzing location, appearance, or motion characteristics across consecutive frames. Secondly, adopting video inpainting with GAN algorithms such as ProPainter is proposed, demonstrating robustness in removing objects other than the target object (e.g., excavator) during the video preprocessing and filling removed areas using information from surrounding pixels or other frames. This approach addresses long-term occlusion issues by focusing on a single object rather than multiple objects. Through these proposed approaches, improvements in the efficiency and accuracy of detection, tracking, and activity recognition for multiple heavy equipment are expected, mitigating MOT challenges caused by occlusions in dynamic construction site environments. Consequently, these approaches are anticipated to play a significant role in systematically managing heavy equipment productivity, environmental impact, and worker safety through the development of advanced construction and management systems.

Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID (계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템)

  • Lee, Sang-Hyun;Yang, Seong-Hun;Oh, Seung-Jin;Kang, Jinbeom
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.89-106
    • /
    • 2022
  • Recently, the amount of video data collected from smartphones, CCTVs, black boxes, and high-definition cameras has increased rapidly. According to the increasing video data, the requirements for analysis and utilization are increasing. Due to the lack of skilled manpower to analyze videos in many industries, machine learning and artificial intelligence are actively used to assist manpower. In this situation, the demand for various computer vision technologies such as object detection and tracking, action detection, emotion detection, and Re-ID also increased rapidly. However, the object detection and tracking technology has many difficulties that degrade performance, such as re-appearance after the object's departure from the video recording location, and occlusion. Accordingly, action and emotion detection models based on object detection and tracking models also have difficulties in extracting data for each object. In addition, deep learning architectures consist of various models suffer from performance degradation due to bottlenects and lack of optimization. In this study, we propose an video analysis system consists of YOLOv5 based DeepSORT object tracking model, SlowFast based action recognition model, Torchreid based Re-ID model, and AWS Rekognition which is emotion recognition service. Proposed model uses single-linkage hierarchical clustering based Re-ID and some processing method which maximize hardware throughput. It has higher accuracy than the performance of the re-identification model using simple metrics, near real-time processing performance, and prevents tracking failure due to object departure and re-emergence, occlusion, etc. By continuously linking the action and facial emotion detection results of each object to the same object, it is possible to efficiently analyze videos. The re-identification model extracts a feature vector from the bounding box of object image detected by the object tracking model for each frame, and applies the single-linkage hierarchical clustering from the past frame using the extracted feature vectors to identify the same object that failed to track. Through the above process, it is possible to re-track the same object that has failed to tracking in the case of re-appearance or occlusion after leaving the video location. As a result, action and facial emotion detection results of the newly recognized object due to the tracking fails can be linked to those of the object that appeared in the past. On the other hand, as a way to improve processing performance, we introduce Bounding Box Queue by Object and Feature Queue method that can reduce RAM memory requirements while maximizing GPU memory throughput. Also we introduce the IoF(Intersection over Face) algorithm that allows facial emotion recognized through AWS Rekognition to be linked with object tracking information. The academic significance of this study is that the two-stage re-identification model can have real-time performance even in a high-cost environment that performs action and facial emotion detection according to processing techniques without reducing the accuracy by using simple metrics to achieve real-time performance. The practical implication of this study is that in various industrial fields that require action and facial emotion detection but have many difficulties due to the fails in object tracking can analyze videos effectively through proposed model. Proposed model which has high accuracy of retrace and processing performance can be used in various fields such as intelligent monitoring, observation services and behavioral or psychological analysis services where the integration of tracking information and extracted metadata creates greate industrial and business value. In the future, in order to measure the object tracking performance more precisely, there is a need to conduct an experiment using the MOT Challenge dataset, which is data used by many international conferences. We will investigate the problem that the IoF algorithm cannot solve to develop an additional complementary algorithm. In addition, we plan to conduct additional research to apply this model to various fields' dataset related to intelligent video analysis.

Study on Perceptions through Big data Analysis on Gambling related News in Korea (한국 사행산업 관련 뉴스의 빅데이터 분석을 통한 인식 연구)

  • Moon, HyeJung;Kim, SungKyung
    • Journal of Broadcast Engineering
    • /
    • v.22 no.4
    • /
    • pp.438-447
    • /
    • 2017
  • The purpose of this study is to understand the recognition of gambling industry through the semantic analysis of news data on lottery, sports betting, horse racing and casino that was reported between 1990 to 2015 in South Korea. This paper revealed the difference between journalists' intention and public's perception about news by analyzing the frequency and connectivity of news with framing and public's interest through semantic network analysis and explored the policy characteristics and innovation task. The result of analysis, news on lottery game mainly has been reported social issue related with win such as 'winning number', 'prize money', 'suspicion of manipulation' and etc. News on sports betting has been reported mandatory information related with business project and illegal site such as 'bidding', 'illegal site', 'sales target' and etc. News about horse racing has been reported the information about the business advertisement such as 'online race track' and 'promotion'. Lastly, casino related news has been reported 'major information' such as illegality', 'gambling place' and 'foreigner'. As a result of times series analysis, news about casino in the 1990s, news about lottery in the 2000s and news about horse racing in 2010s have been increased. Public's interest also has been moved to 'business scandal', 'winning game', 'citizens' campaign' and etc. Gambling related news has been classified by four types, 1. advertising publicity(horse racing), 2. mandatory information(sports betting), 3. social issue(public agenda, lottery), 4. major information(casino). We could get the insight that news can be formed a public agenda, when news is reported as a social issue with high frequency and public's interest like lottery related news.

Development of CCTV Cooperation Tracking System for Real-Time Crime Monitoring (실시간 범죄 모니터링을 위한 CCTV 협업 추적시스템 개발 연구)

  • Choi, Woo-Chul;Na, Joon-Yeop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.546-554
    • /
    • 2019
  • Typically, closed-circuit television (CCTV) monitoring is mainly used for post-processes (i.e. to provide evidence after an incident has occurred), but by using a streaming video feed, machine-based learning, and advanced image recognition techniques, current technology can be extended to respond to crimes or reports of missing persons in real time. The multi-CCTV cooperation technique developed in this study is a program model that delivers similarity information about a suspect (or moving object) extracted via CCTV at one location and sent to a monitoring agent to track the selected suspect or object when he, she, or it moves out of range to another CCTV camera. To improve the operating efficiency of local government CCTV control centers, we describe here the partial automation of a CCTV control system that currently relies upon monitoring by human agents. We envisage an integrated crime prevention service, which incorporates the cooperative CCTV network suggested in this study and that can easily be experienced by citizens in ways such as determining a precise individual location in real time and providing a crime prevention service linked to smartphones and/or crime prevention/safety information.

Extended Target State Vector Estimation using AKF (적응형 칼만 필터를 이용한 확장 표적의 상태벡터 추정 기법)

  • Cho, Doo-Hyun;Choi, Han-Lim;Lee, Jin-Ik;Jeong, Ki-Hwan;Go, Il-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.507-515
    • /
    • 2015
  • This paper proposes a filtering method for effective state vector estimation of highly maneuvering target. It is needed to hit the point called 'sweet spot' to increase the kill probability in missile interception. In paper, a filtering method estimates the length of a moving target tracked by a frequency modulated continuous wave (FMCW) radar. High resolution range profiles (HRRPs) is generated from the radar echo signal and then it's integrated into proposed filtering method. To simulate the radar measurement which is close to real, the study on the properties of scattering point of the missile-like target has been conducted with ISAR image for different angle. Also, it is hard to track the target efficiently with existing Kalman filters which has fixed measurement noise covariance matrix R. Therefore the proposed method continuously updates the covariance matrix R with sensor measurements and tracks the target. Numerical simulations on the proposed method shows reliable results under reasonable assumptions on the missile interception scenario.