• Title/Summary/Keyword: Track Deformation

Search Result 136, Processing Time 0.031 seconds

Effect of bridge lateral deformation on track geometry of high-speed railway

  • Gou, Hongye;Yang, Longcheng;Leng, Dan;Bao, Yi;Pu, Qianhui
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.219-229
    • /
    • 2018
  • This paper presents an analytical model to analyze the mapping relationship between bridge lateral deformation and track geometry of high-speed railway. Based on the rail deformation mechanisms, the deformation of track slab and rail at the locations of fasteners are analyzed. Formulae of rail lateral deformation are derived and validated against a finite element model. Based on the analytical model, a rail deformation extension coefficient is presented, and effects of different lateral deformations on track geometry are evaluated. Parametric studies are conducted to evaluate the effects of the deformation amplitude, fastener stiffness and mortar layer stiffness on the rail deformation. The rail deformation increases with the deformation of the girder, and is dependent on the spacing of the fasteners, the elastic modulus of the rail's material, and the moment of inertia of the rail's section.

Parametric analysis on Deformation of Sharp Curved Ballasted Track (급곡선 자갈궤도의 궤도변형에 관한 매개변수 해석)

  • Choi, Jung-Youl;Kim, Jun-Hyung;Son, Gab-Soo;Kim, Sang-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.28-33
    • /
    • 2017
  • A sharp curved ballasted track on earthwork that was connected with a direct fixation slab track on steel box railway bridges have been deformed and damaged despite the frequently maintenance by a restoring force of sharp curved rail and track-bridge interaction forces such as axial forces and longitudinal displacement of continuous welded rail(CWR) owing to their structural characteristics, calling for alternatives to improve the structural safety and track irregularity. In this study, the authors aim to prove a cause of deformation for the sharp curved ballasted tracks to enhance the structural safety and track irregularity of ballasted track in service. A track-bridge interaction analysis and a finite-element method analysis for the sharp curved ballasted track were performed to consider the axial force and longitudinal displacement of CWR, the temperature and the effect of restoring force of sharp curved rail. From the results, the deformation of the sharp curved ballasted track with adjusted sleeper spacing from 833mm to 590mm were significantly reduced.

Continuous deformation measurement for track based on distributed optical fiber sensor

  • He, Jianping;Li, Peigang;Zhang, Shihai
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • Railway tracks are the direct supporting structures of the trains, which are vulnerable to produce large deformation under the temperature stress or subgrade settlement. The health status of track is critical, and the track should be routinely monitored to improve safety, lower the risk of excess deformation and provide reliable maintenance strategy. In this paper, the distributed optical fiber sensor was proposed to monitor the continuous deformation of the track. In order to validate the feasibility of the monitoring method, two deformation monitoring tests on one steel rail model in laboratory and on one real railway tack in outdoor were conducted respectively. In the model test, the working conditions of simply supported beam and continuous beam in the rail model under several concentrated loads were set to simulate different stress conditions of the real rail, respectively. In order to evaluate the monitoring accuracy, one distributed optical fiber sensor and one fiber Bragg grating (FBG) sensor were installed on the lower surface of the rail model, the strain measured by FBG sensor and the strain calculated from FEA were taken as measurement references. The model test results show that the strain measured by distributed optical fiber sensor has a good agreement with those measured by FBG sensor and FEA. In the outdoor test, the real track suffered from displacement and temperature loads. The distributed optical fiber sensor installed on the rail can monitor the corresponding strain and temperature with a good accuracy.

A Study on Track Deformation Characteristics of Turnout System by Adjacent Excavation Work on Urban Transit (인접굴착공사에 따른 도시철도 분기기 궤도의 변형 특성에 관한 연구)

  • Kim, Hae-Sung;Choi, Jung-Youl;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.477-482
    • /
    • 2022
  • The structure of the turnout track is very complex, so it is a facility that is more difficult to maintain and requires detailed management than a general track type. The purpose of this study is to analyze the effect on the deformation of the turnout system of the ground section due to the excavation work adjacent to the serviced urban railways. In this study, based on finite element analysis for each stage of adjacent excavation, the track deformation for each major location of turnout system was analyzed in consideration of the layout of the turnout system installed on the ground section, and the safety and stability was confirmed by comparing it with the track irregularity regulation. As a result of the study, it was found that the major construction stage affecting the track deformation of the turnout system on the ground section was the final stage of excavation. In addition, although the vertical displacement which is a vertical irregularity occurred relatively large, it was analyzed that the horizontal deformation was dominant overall, because of the excavation site is located on the side of the turnout system. In addition, it was analyzed that the amount of displacement at each major location of the turnout system is different, and there is a possibility that there may be a twist irregularity due to the deviation of the track deformation for each location according to the distance from the excavation site. Therefore, it was analyzed that it is necessary to classify and manage the importance of the track deformation of the turnout system of actual operating line, including additional displacement due to adjacent excavation, based on the track irregularity that has occurred at each location where the major deformation characteristics occur.

Mapping vertical bridge deformations to track geometry for high-speed railway

  • Gou, Hongye;Ran, Zhiwen;Yang, Longcheng;Bao, Yi;Pu, Qianhui
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.467-478
    • /
    • 2019
  • Running safety and ride comfort of high speed railway largely depend on the track geometry that is dependent on the bridge deformation. This study presents a theoretical study on mapping the bridge vertical deformations to the change of track geometry. Analytical formulae are derived through the theoretical analysis to quantify the track geometry change, and validated against the finite element analysis and experimental data. Based on the theoretical formulae, parametric studies are conducted to evaluate the effects of key parameters on the track geometry of a high speed railway. The results show that the derived formulae provide reasonable prediction of the track geometry change under various bridge vertical deformations. The rail deflection increases with the magnitude of bridge pier settlement and vertical girder fault. Increasing the stiffness of the fasteners or mortar layer tends to cause a steep rail deformation curve, which is undesired for the running safety and ride comfort of high-speed railway.

Analytical evaluation of the influence of vertical bridge deformation on HSR longitudinal continuous track geometry

  • Lai, Zhipeng;Jiang, Lizhong;Liu, Xiang;Zhang, Yuntai;Zhou, Tuo
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.473-488
    • /
    • 2022
  • A high-speed railway (HSR) bridge may undergo long-term deformation due to the degradation of material stiffness, or foundation settlement during its service cycle. In this study, an analytical model is set up to evaluate the influence of this long-term vertical bridge deformation on the track geometry. By analyzing the structural characteristics of the HSR track-bridge system, the energy variational principle is applied to build the energy functionals for major components of the track-bridge system. By further taking into account the interlayer's force balancing requirements, the mapping relationship between the deformation of the track and the one of the bridge is established. In order to consider the different behaviors of the interlayers in compression and tension, an iterative method is introduced to update the mapping relationship. As for the validation of the proposed mapping model, a finite element model is created to compare the numerical results with the analytical results, which show a good agreement. Thereafter, the effects of the interlayer's different properties of tension and compression on the mapping deformations are further evaluated and discussed.

Running safety of high-speed train on deformed railway bridges with interlayer connection failure

  • Gou, Hongye;Liu, Chang;Xie, Rui;Bao, Yi;Zhao, Lixiang;Pu, Qianhui
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.261-274
    • /
    • 2021
  • In a railway bridge, the CRTS II slab ballastless track is subjected to interlayer connection failures, such as void under slab, mortar debonding, and fastener fracture. This study investigates the influences of interlayer connection failure on the safe operation of high-speed trains. First, a train-track-bridge coupled vibration model and a bridge-track deformation model are established to study the running safety of a train passing a deformed bridge with interlayer connection failure. For each type of the interlayer connection failure, the effects of the failure locations and ranges on the track irregularity are studied using the deformation model. Under additional bridge deformation, the effects of interlayer connection failure on the dynamic responses of the train are investigated by using the track irregularity as the excitation to the vibration model. Finally, parametric studies are conducted to determine the thresholds of additional bridge deformations considering interlayer connection failure. Results show that the interlayer connection failure significantly affects the running safety of high-speed train and must be considered in determining the safety thresholds of additional bridge deformation in the asset management of high-speed railway bridges.

Development of A Permanent Deformation Model based on Shear Stress Ratio for Reinforced-Roadbed Materials (전단응력비 개념에 기초한 강화노반의 영구변형 모델 수립)

  • Lim, Yu-Jin;Lee, Seong-Hyeok;Kim, Dae-Seong;Park, Mi-Yun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2049-2056
    • /
    • 2011
  • The reinforced-roadbed materials composed of crushed stones are used for preventing vertical deformation and reducing impact load caused by highspeed train. Repeated load application can induce deformation in the reinforced-roadbed layer so that it causes irregularity of track. Thus it is important to understand characteristics of permanent deformation in the reinforced-subbase materials. The characteristics of permanent deformation can be simulated by prediction model that can be obtained by performing repetitive triaxial test. The prediction model of permanent deformation is a key-role in construction of design method of track. The prediction model of permanent deformation is represented in usual as the hyperbolic function with increase of number of load repetition. The prediction model is sensitive to many factors including stress level etc. so that it is important to define parameters of the model as clearly as possible. Various data obtained from repetitive triaxial test and resonant column test using the reinforced-roadbed of crushed stone are utilized to develop a new prediction model based on concept of shear-stress ratio and elastic modulus. The new prediction model of permanent deformation can be adapted for developing design method of track in the future.

  • PDF

Evaluation of Sleeper Supporting Condition for Railway Ballasted Track using Modal Test Technique (모달시험기법을 이용한 자갈궤도의 침목지지조건평가)

  • Jung-Youl Choi;Tae-Jung Yoon;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.537-542
    • /
    • 2023
  • Recently, deformation of operating railway structures has occurred due to adjacent excavation works such as new structures and utility tunnel expansion concentrated around downtown areas. However, most of them are focused on structural review, repair and reinforcement of structures. A review of the Track is insufficient. In particular, in the case of the gravel track on the earthwork subgrade, the subgrade and the ballast are not solidified. A slight level of deformation can cause ballast relaxation. Sleeper support conditions may lead to unstable conditions. Sufficient safety must be ensured. In addition, it is a track type with a high risk of train derailment due to unstable support conditions. In this study, the correlation between the deformation characteristics of gravel tracks and track support performance according to subgrade deformation is experimentally and analytically verified. In addition, an evaluation technique that can evaluate the condition of the gravel track and the track support stiffness is presented.

Deformation and Stress Distribution of Discontinuous Precast Concrete Track Slab : I. Initial and Temperature Deformation (불연속 프리캐스트 콘크리트궤도 슬래브의 변형과 응력 분포 : I. 초기 및 온도 변형)

  • Lee, Dong Hoon;Kim, Ki Hyun;Jang, Seung Yup;Zi, Goangseup
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.625-636
    • /
    • 2017
  • This study looked into the behavior of precast concrete track due to temperature variation and initial track deformation and examined the effect of initial deformation and deformation caused by temperature gradient on the stress distribution of slab under train load. In this paper, one of two papers in a series, a finite element analysis model for calculating deformation and stress of precast concrete track was proposed; the temperature distribution and displacements measured at the precast concrete track in the field were compared with the analytical results. The results show that the slab always curled up due to initial deformation; by comparing the measured displacements with the displacements calculated by taking measured temperatures at each depth as input, the effective built-in temperature (EBITD), the temperature difference between the top and bottom of the slab corresponding to the initial deformation, can be estimated. If EBITD is relevantly assumed, the calculated displacements correlate well with the measured ones.