• Title/Summary/Keyword: Tracer decay

Search Result 36, Processing Time 0.024 seconds

A Study on the Error Associated with Ventilation Rate Calculation Using Different Sampling Intervals (측정시간에 따른 거주주택의 환기량 계산 오류에 관한 연구)

  • 양원호;배현주;이기영;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.50-54
    • /
    • 2000
  • Ventilation rates can be measured directly by a tracer decay method, although little is known of the effects of different sampling intervals on decay rte calculations. This study determined variations in decay rates calculated by three techniques using residential ozone decay data. The calculation techniques were a regression technique, decay techniques using half-life and average-life, and finite difference techniques using two different time intervals. Variation associated with regression technique calculations for residential ozone decay rates based on data from both sample intervals were within 10% (2.81$\pm$1.88 hr-1). However, both half-life and finite difference technique calculations using a shorter-time interval were significantly different from those obtained with the regression technique(p<0.05). Therefore, the use of short sampling intervals in tracer decay may cause significant error in decay rate calculations.

  • PDF

A Study of Residence Time Calculation Methods in Decay Tank Design (감쇠탱크 설계를 위한 체류시간 계산 방법에 관한 연구)

  • Jung, Minkyu;Seo, Kyoungwoo;Kim, Seonghoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.5
    • /
    • pp.220-230
    • /
    • 2017
  • In this study we apply and compare a variety of numerical methods for calculating residence time distribution in decay tanks, a major design component in the for reducing N-16 radioactivity. Our research group has used a streamlined method using user-defined particle numbers. However, this streamlined method has several problems, including low exiting particle ratios, particle diminishing, and unphysical time distribution, among others. We utilize three numerical methods to establish residence time and time distribution (streamlined, discrete phase method [DPM], and user defined scalar [UDS]) and subsequently compare the averaged results of each. The three tests demonstrate the flow features within the decay tanks, which are then numerically simulated to enable comparison. We conclude that although each simulation predicts similar time averages, the UDS methodology provides a smoother time distribution and tracer contour plots at specific times.

Uncertainty Analysis of Interzonal Airflow Rates by Tracer Gas Methods (추적가스를 이용한 실간환기량 산정방법에 따른 불확실성 해석)

  • Han, Hwa-Taik;Cho, Seok-Hyo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.529-534
    • /
    • 2008
  • Interzonal air movements are important to characterize overall ventilation performance of complicated multi-zone buildings. Tracer gas techniques are widely used to measure ventilation rates, ventilation effectiveness, and interzonal air movements. Depending on the number of gases used, they are divided into single and multi tracer gas methods. This paper deals with the comparison of the tracer gas methods in measuring air exchange rate between rooms. Experiments have been conducted in a simple two-room model with known airflow rates. In multi-gas procedure, the concentration decays of two tracer gases, i.e SF6 and R134a are measured after simultaneous injections in each room. The single tracer gas method is also applied by injecting SF6 gas with a time lag between two rooms. The data reduction procedures are developed to obtain the interzonal airflow rate using the matrix inversion, and various data manipulation methods are tested, such as data shift, interpolation, and smoothing. Uncertainty for each airflow rate is investigated depending on the parameters based on the setting values.

  • PDF

A Study on Tracer Gas Methodology to Measure Interzonal Airflow Rates (실간환기량 측정을 위한 추적가스 실험방법론에 관한 연구)

  • Han, Hwa-Taik;Cho, Seok-Hyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.11
    • /
    • pp.606-612
    • /
    • 2009
  • Interzonal air movements are important to characterize overall ventilation performance of complicated multi-zone buildings. Tracer gas techniques are widely used to measure ventilation rates, ventilation effectiveness, and interzonal air movements. Depending on the number of gases used, they are divided into single and multi tracer gas methods. This paper deals with the comparison of the tracer gas methods in measuring air exchange rate between rooms. Experiments have been conducted in a simple two-room model with known airflow rates. In multi-gas procedure, the concentration decays of two tracer gases, i.e SF6 and R134a are measured after simultaneous injections in each room. The single tracer gas method is also applied by injecting SF6 gas with a time lag between two rooms. The data reduction procedures are developed to obtain the interzonal airflow rate using the matrix inversion, and various data manipulation methods are tested, such as data shift, interpolation, and smoothing. Uncertainty for each airflow rate is investigated depending on the parameters based on the setting values.

An Experiment on Verification of Multi-Gas Tracer Technique for Air Exchange Rate Between Rooms (실간환기량 측정을 위한 멀티추적가스법의 검증실험)

  • Han, Hwa-Taik;Cho, Seok-Hyo
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.99-104
    • /
    • 2007
  • Tracer gas technique is widely used to measure the ventilation rates and/or ventilation effectiveness of building spaces. However, the conventional method using a single tracer gas can measure only outdoor air change rates in a single zone. This paper deals with the multi-gas tracer technique to measure air exchange rates between rooms. Interzonal air movements are important to characterize overall ventilation performance of complicated multi-zone buildings. Experiments are conducted in a simple two-room model with known airflow rates using tracer gases of SF6 and R134a. The concentration decays of two tracer gases are measured after simultaneous injections in each room. The governing equations are derived from the continuity and the mass balance of each room. The data reduction procedure are developed to obtain the inter-room airflow rates using the governing matrix inversion, and various data manipulation methods are tested, such as data shift, interpolation, smoothing, and etc, to improve the estimate and interpretation of the results.

  • PDF

Analysis of Ventilation Performance Using a Model Chamber

  • Kang Tae-Wook;Chang Tae-Hyeon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.736-743
    • /
    • 2005
  • In this study, three different types of mechanical ventilation systems are compared based on their ventilation characteristics: tracer gas concentration decay characteristics, and ventilation effectiveness by calculating actual ventilation air flow rate. The experiments are performed by using a step-down method for measuring tracer gas. $CO_{2}$ gas, concentration in the model chamber. Application of a mixing factor, k, was used and measured values ranged from 0.68 to 0.77. The Type 2 ventilation system was found to have the highest ventilation effectiveness rather than the Types 1 and 3.

유성지역 소유역에서 추적자(Cl)를 이용한 강우사상에 따른 지표수로부터 기저유출의 분리

  • Jo Seong-Hyeon;Ha Gyu-Cheol;Go Dong-Chan;Jo Min-Jo;Song Mu-Yeong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.352-358
    • /
    • 2005
  • This study aims to separate hydrograph into baseflow and event water to calculate baseflow rate during a rainfall in small catchments, Yuseong, Daejeon, The hydrograph of stream during a period with no excess rainfall will decay. The discharge is composed entirely of groundwater contributions. During the period, the Cl concentration of the stream water can be regarded as being in equilibrium with that of the groundwater. Using Cl as a conservative tracer, two-component hydrograph separations were performed from end point of the period to next end point. The required data were obtained by monitoring of the surface water table, along with discharge rate of stream. Cl concentration of rainfall, surface water were measured and recorded. Hydrograph separation, a mixing model using chemical tracer is applied to chemical hydrograph separation technique. These results show that baseflow rates are 31.6% of rainfall in the catchments during study period.

  • PDF

Comparison of pollutant removal efficiency according to the locations of the supply and exhaust (격리병실내 급배기구 위치에 따른 오염물 제거효율 비교)

  • Won, An-Na
    • Journal of Urban Science
    • /
    • v.9 no.2
    • /
    • pp.13-20
    • /
    • 2020
  • The Recently, several countries have been affected by respiratory diseases, resulting in renewed research interest in their prevention and control. One such example was the 2015 outbreak of Middle East Respiratory Syndrome (MERS) in South Korea and COVID-19. In this study, we performed experiments and simulations based on concentration decay using CO2 as the tracer gas to elucidate the pollutant-removal efficiency for different inlet and exhaust locations and outdoor air-supply ratios. The wall inlet exhibited a higher pollutant-removal efficiency, owing to the upward movement of the air from the lower zone to the upper one. In conclusion, it is recommended that a total air-conditioning plan for isolation rooms be established as well as efficient system operation for pollutant removal and air-flow control to prevent the transmission of infections from the patients to others.

Prediction of Chlorine Residual in Water Distribution System (상수관망내 잔류염소농도 분포 예측)

  • Joo, Dae-Sung;Park, No-Suk;Park, Heek-Yung;Oh, Jung-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.118-124
    • /
    • 1998
  • To use chlorine residual as an surrogate parameter of the water quality change during the transportation in the water distribution system(WDS), the correct prediction model of chlorine residual must be established in advance. This paper shows the procedure and the result of applying the water quality model to the field WDS. To begin with, hydraulic model was calibrated and verified using fluoride as an tracer. And chlorine residual was predicted through simulation of water quality model. This predicted value was compared with the observed value. With adjusting the bulk decay coefficient(kb) and the wall decay coefficient(kw) according to the pipewall environment, the predicted chlorine residual can represent the observed value relatively well.

  • PDF

Evaluation of Ventilation Performances for Various Combinations of Inlets and Outlets in a Residential Unit through CO2 Tracer-Gas Concentration Decay Method (CO2 추적가스 농도감소법을 이용한 공동주택의 급·배기구 조합에 따른 환기 성능 분석)

  • Sang Yoon Lee;Soo Man Lee;Jong Yeob Kim;Gil Tae Kim;Byung Chang Kwag
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.111-120
    • /
    • 2023
  • Indoor air quality has become increasingly important with the increase in time spent in residential environments, impact of external fine dust, yellow dust, and the post-COVID 19 pandemic. Residential mechanical ventilation plays a key role in addressing indoor air quality. The legal standard for residential air changes per hour in Korea is 0.5 ACH. However, there are no standards for the location of supply and return vents. This study atempts to analyze the impact of ventilation performance based on the location of supply and return vents. An experiment was conducted using the CO2 tracer gas concentration decay method in a mock-up house set inside a large chamber to minimize external influences. The experimental results indicated that the commonly used combination of 2 supply and 2 return vents in living room spaces had a lower mean age of air than the combination of 1 supply and 2 return vents. Using multiple supply and return vents had lower mean age of air than using just 1 supply and 1 return vent.