• Title/Summary/Keyword: Tracer concentration

Search Result 184, Processing Time 0.031 seconds

Membrane Strip 크로마토그래피 방법에 기초한 전기화학발광 (Electro-Chemiluminescence) 면역센서의 개발

  • Yun, Chae-Ha;Baek, Se-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.206-207
    • /
    • 2000
  • A disposable, electro-chemiluminescent immunosensor utilizing a screen-printed carbon electrode and liposome coupled to antibody as tracer has been constructed. In proportion to the analyte (Legionella species as a model) concentration, the analyte-immunoliposome complexes were transferred by the capillary action through a membrane strip to the electrode, the liposomes were lysed in the presence of detergent, and ruthenium was released for signal generation. Such performance of the immunosensor was appropriate for a point-of-care testing.

  • PDF

A Numerical Study on the Flow Fields in the Continuous Casting Mold with Electromagnetic Brake (EMBR이 적용된 연속주조 몰드 내부에서의 유동장 해석)

  • Ha M. Y.;Lee H. G.
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 1999
  • We developed a computer program to simulate the flow field in the presence of electro-magnetic fields. The steady, two-dimensional conservation equations for mass and momentum were solved simultaneously with Maxwell equations for electro-magnetic fields. Using this program, a numerical analysis was carried out to analyze the fluid flow in the continuous casting mold with electromagnetic brake. The effects of magnetic fields size, nozzle angle and EMBR yoke position on the flow fields in the continuous casting were investigated in the present study. The flow fields with EMBR were compared with those without EMBR. We also investigated the distribution of tracer concentration as a function of time in order to calculate their residence time in the mold with EMBR. By controlling the flow fields properly using EMBR, we can prevent the direct flow impaction on the wall which can give a damage on the mold surface and reduce surface defects of stainless steel sheet products.

  • PDF

A Direct Injection-mixing Total-flow-control Boom Sprayer System (주입식 총유량 자동제어방식 분관 방제기의 개발)

  • 구영모
    • Journal of Biosystems Engineering
    • /
    • v.21 no.2
    • /
    • pp.155-166
    • /
    • 1996
  • A direct injection sprayer was designed using the concepts of injection mixing and total flow control, flowrate-based system compensating for the variation of forwarding speed. A metered rate, proportionally to the actual diluent flow rate, of a tracer chemical was injected directly into the diluent stream. The injection of chemical may improve the precision and safety of chemical application process. The control system was evaluated for the variables of the control interval, tolerances and sensitivities of flow regulation valve and injection pump. Performance of the system was assessed as that the response time of flow rate, response time of injection rate, absolute steady state error, and the coefficient of variance(C.V.) of concentration were 8.5 and -0.53 seconds, 0.067 lpm(0.8%) and 3.15%, respectively, at optimal parameters of control interval of 1.0 sec, fast sensitivity of flow regulation valve, medium sensitivity of injection pump and medium tolerance of flow rate. Performance of the system can be improved by increasing the sensitivity of flow regulating valve and employing a high resolution velocimeter, such as Doppler radar.

  • PDF

Effect of rotational motion of piston ring on the oil consumption -2'nd report: Relationship between phase angle of ring end gap and oil consumption (피스톤링의 회전운동이 오일소모에 미치는 영향-제2보: 링갭의 위상각과 오일소모와 의 관계-)

  • 민병순;김중수;오대윤;최재권;진준하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.81-88
    • /
    • 1999
  • In order to understand the relationship between the phase angle of piston ring and oil consumption was measured by analyzing $CO_2$concentration in exhaust gas. The use of hydrogen fuel not gasoline makes this possible because all of the carbon component in exhaust gas can be assumed to be produced from oil. As a result of experiment, it is known that the oil consumption varies periodically and a specific location of ring end gap was found at each peak of oil consumption. Therefore, it was found that the oil consumption was not constant even at the same operating conditions and this is because the relative locations of top and 2'nd ring end gap change arbitrarily.

  • PDF

A Study on the Occurrence Character of Contaminant in the Kitchen that Use Gas Fuel (가스를 연료로 사용한 주방에서의 오염물질 발생 특성에 대한 연구)

  • 박명길;함진식
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2001.11a
    • /
    • pp.77-82
    • /
    • 2001
  • This paper is contents that measure the ventilation rates and temperature by driving condition of exhaust fan, vapor, contaminant occurrence amount of carbon dioxide etc. In kitchen of apartment house. The ventilation rates in the apartment kitchen measured by Tracer Gas Method. And, temperature of when cook by gas table hood lower part 10cm and floor upside 10cm of kitchen central part, 120cm, 210cm heights measure. As ventilation rates measurement result, ventilation number of times was 0.7(number of times/hour) when did not to operate exhaust fan. but we were measured by 2.3(number of times/hour) when drove strongly. As temperature measurement result at cooking by gas table, temperature showed highest in hood lower part 10cm of case that do not operate exhaust fan. Temperature at kitchen central was most low in 10cm height in talc floor, and 210cm were measured highest. Concentration of carbon dioxide is very high by 4,350ppm after measurement time 10 minutes in state who do not operate exhaust fan at cooking by gas table.

  • PDF

Electrical Characteristics of Mono Crystalline Silicon Solar Cell for Concentrating PV System using Fresnel Lenses (프레넬 렌즈를 이용한 집광 시 단결정 실리콘 태양전지의 전기적 특성)

  • Kang, Kyung-Chan;Kang, Gi-Hwan;Yu, Gwon-Jong;Huh, Chang-Su
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.218-219
    • /
    • 2007
  • Silicon feed stock shortage have acted as major restraints for growth of photovoltaic industry. Concentrating photovoltaic (CPV) system will reduce the use of silicon PV materials. This paper presents the application possibility of mono-crystalline silicon solar cell, which has increased in market share, for PV concentrator. We measured the power of solar cell using sun simulator and I-V curve tracer and compared the results. The comparison of results showed that the concentrated solar cell generated the power more approximately 7 times than without concentration in spite of non-heat sink. If CPV technology included heat sink combines already developed PV tracking system, it will have a merit economically.

  • PDF

The Characteristics of Hydrodynamic Dispersion in a Horizontally Heterogeneous Fractured Rock Through Single Well Injection Withdrawal Tracer Tests (수평적으로 불균질한 단열암반층에서 단공주입양수 추적자시험에 의한 수리분산특성)

  • Kang, Dong-Hwan;Chung, Sang-Yong;Kim, Byung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.53-60
    • /
    • 2006
  • Single well injection withdrawal tracer tests with bromide were carried out at two wells developed in a horizontally heterogeneous fractured rock. The hydraulic conductivity of TW-1 well was 5 times larger than TW-2 well, and the average linear velocity of TW-2 well was 1.8 times faster than TW-1 well. The difference of hydrodynamic dispersions of two wells in the fractured rock was studied with the analysis of concentration breakthrough curves and cumulative mass recovery curves of bromide with withdrawal time, and the estimation of average travel distance, pore velocity, longitudinal dispersivity and longitudinal dispersion coefficient. The average travel distances of bromide were estimated to be 3.00 m in TW-1 well and 5.62 m in TW-2 well. The average pore velocities for the injection/withdrawal phase were estimated to be $4.31\;{\times}\;10^{-4}\;m/sec$ in TW-1 well and $8.08\;{\times}\;10^{-4}\;m/sec$ in TW-2 well. Average travel distance and pore velocity were higher in TW-2 well because of small effective porosity. Longitudinal dispersivities were estimated to be 28.73 cm in TW-1 well and 18.49 cm in TW-2 well, and bromide transport was 1.55 times faster in TW-1 well. Longitudinal dispersion coefficients were estimated to be $5.14\;{\times}\;10^{-6}\;m^2/sec$ in TW-1 well and $6.06\;{\times}\;10^{-6}\;m^2/sec$ in TW-2 well, and diffusion area was 1.18 times larger in TW-2 well.

Assessment of chemical purity of [13N]ammonia injection: Identification of aluminium ion concentration

  • Kim, Ho Young;Park, Jongbum;Lee, Ji Youn;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.2
    • /
    • pp.80-84
    • /
    • 2018
  • $[^{13}N]$Ammonia or $[^{13}N]NH_3$ is one of the most widely used PET tracer for the measurement of MBF. To produce $[^{13}N]NH_3$, devarda's alloy which contains aluminum, copper and zinc is used for the purpose of reduction from $^{13}N$-nitrate/nitrite to $[^{13}N]NH_3$. Since aluminum has neurotoxicity and renal toxicity, the amount of it should be carefully limited for the administration to the human body. Although USP and EP provide a way to identify the aluminum ion concentration, there are some difficulties to perform. Therefore, we tried to develop the modified method for verifying aluminum concentration of test solution. We compared color between test and standard solutions using chrome azurol S in pH 4.6 acetate buffer. We also tested color change of test and standard solutions according to pH, amounts and the order of reagent and time difference These results demonstrated that the color change of the solution can reflect quantitatively measure aluminum ion concentration. We hope the method is to be used effectively and practically in many sites where $[^{13}N]NH_3$ is produced.

Development of tracer concentration analysis method using drone-based spatio-temporal hyperspectral image and RGB image (드론기반 시공간 초분광영상 및 RGB영상을 활용한 추적자 농도분석 기법 개발)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun;Han, Eunjin;Kwon, Siyoon;Kim, Youngdo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.623-634
    • /
    • 2022
  • Due to river maintenance projects such as the creation of hydrophilic areas around rivers and the Four Rivers Project, the flow characteristics of rivers are continuously changing, and the risk of water quality accidents due to the inflow of various pollutants is increasing. In the event of a water quality accident, it is necessary to minimize the effect on the downstream side by predicting the concentration and arrival time of pollutants in consideration of the flow characteristics of the river. In order to track the behavior of these pollutants, it is necessary to calculate the diffusion coefficient and dispersion coefficient for each section of the river. Among them, the dispersion coefficient is used to analyze the diffusion range of soluble pollutants. Existing experimental research cases for tracking the behavior of pollutants require a lot of manpower and cost, and it is difficult to obtain spatially high-resolution data due to limited equipment operation. Recently, research on tracking contaminants using RGB drones has been conducted, but RGB images also have a limitation in that spectral information is limitedly collected. In this study, to supplement the limitations of existing studies, a hyperspectral sensor was mounted on a remote sensing platform using a drone to collect temporally and spatially higher-resolution data than conventional contact measurement. Using the collected spatio-temporal hyperspectral images, the tracer concentration was calculated and the transverse dispersion coefficient was derived. It is expected that by overcoming the limitations of the drone platform through future research and upgrading the dispersion coefficient calculation technology, it will be possible to detect various pollutants leaking into the water system, and to detect changes in various water quality items and river factors.

Seasonal Variation of PM2.5 Components Observed in an Industrial Area of Chiba Prefecture, Japan

  • Ichikawa, Yujiro;Naito, Suekazu;Ishii, Katsumi;Oohashi, Hideaki
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.66-77
    • /
    • 2015
  • In order to survey the seasonal variation of the chemical composition of particulate matter of $2.5{\mu}m$ or less ($PM_{2.5}$), $PM_{2.5}$ was sampled from 8 February 2013 to 31 March 2014 in an industrial area of Chiba Prefecture, Japan. Chemical measurements of the sample included: ionic components ($Na^+$, $NH_4{^+}$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Cl^-$, $NO_3{^-}$ and $SO_4{^{2-}}$), carbonaceous components - organic carbon (OC) and elemental carbon (EC), and water-soluble organic carbon (WSOC). Also, secondary organic carbon (SOC) was measured based using the EC tracer method, and char-EC and soot-EC were calculated from the analytical results. The data obtained were interpreted in terms of temporal variation. Of the overall mean value of $PM_{2.5}$ mass concentration obtained during the study period, ionic components, OC and EC accounted for 45.3%, 19.7%, and 8.0%, respectively. $NO_3{^-}$ showed a unique seasonal distribution pattern due to a dependence on temperature and absolute humidity. It was estimated that an approximate temperature of $14^{\circ}C$, and absolute humidity of $7g/m^3$ were critical for the reversible reaction of $NH_4NO_3(p){\leftrightharpoons}NH_3(g)+HNO_3(g)$. The amount of OC and EC contributing to the monthly $PM_{2.5}$ mass concentration was higher in autumn and winter compared to spring and summer. This result could be attributed to the impact of burning biomass, since WSOC and the ratio of char-EC/soot-EC showed a similar pattern during the corresponding period. From the comparison of monthly WSOC/OC values, a maximum ratio of 83% was obtained in August (summer). The WSOC and estimated SOC levels derived from the EC tracer method correlated (R=0.77) in summer. The high occurrence of WSOC during summer was mainly due to the formation of SOC by photochemical reactions. Through long-term observation of $PM_{2.5}$ chemical components, we established that the degree to which the above-mentioned factors influence $PM_{2.5}$ composition, fluctuates with seasonal changes.