• Title/Summary/Keyword: Toxicological evaluation

Search Result 327, Processing Time 0.023 seconds

Phototoxicity Evaluation of Pharmaceutical Substances with a Reactive Oxygen Species Assay Using Ultraviolet A

  • Lee, Yong Sun;Yi, Jung-Sun;Lim, Hye Rim;Kim, Tae Sung;Ahn, Il Young;Ko, Kyungyuk;Kim, JooHwan;Park, Hye-Kyung;Sohn, Soo Jung;Lee, Jong Kwon
    • Toxicological Research
    • /
    • v.33 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • With ultraviolet and visible light exposure, some pharmaceutical substances applied systemically or topically may cause phototoxic skin irritation. The major factor in phototoxicity is the generation of reactive oxygen species (ROS) such as singlet oxygen and superoxide anion that cause oxidative damage to DNA, lipids and proteins. Thus, measuring the generation of ROS can predict the phototoxic potential of a given substance indirectly. For this reason, a standard ROS assay (ROS assay) was developed and validated and provides an alternative method for phototoxicity evaluation. However, negative substances are over-predicted by the assay. Except for ultraviolet A (UVA), other UV ranges are not a major factor in causing phototoxicity and may lead to incorrect labeling of some non-phototoxic substances as being phototoxic in the ROS assay when using a solar simulator. A UVA stimulator is also widely used to evaluate phototoxicity in various test substances. Consequently, we identified the applicability of a UVA simulator to the ROS assay for photoreactivity. In this study, we tested 60 pharmaceutical substances including 50 phototoxins and 10 non-phototoxins to predict their phototoxic potential via the ROS assay with a UVA simulator. Following the ROS protocol, all test substances were dissolved in dimethyl sulfoxide or sodium phosphate buffer. The final concentration of the test solutions in the reaction mixture was 20 to $200{\mu}M$. The exposure was with $2.0{\sim}2.2mW/cm^2$ irradiance and optimization for a relevant dose of UVA was performed. The generation of ROS was compared before and after UVA exposure and was measured by a microplate spectrophotometer. Sensitivity and specificity values were 85.7% and 100.0% respectively, and the accuracy was 88.1%. From this analysis, the ROS assay with a UVA simulator is suitable for testing the photoreactivity and estimating the phototoxic potential of various test pharmaceutical substances.

Method Development for the Profiling Analysis of Endogenous Metabolites by Accurate-Mass Quadrupole Time-of-Flight(Q-TOF) LC/MS (LC/TOFMS를 이용한 생체시료의 내인성 대사체 분석법 개발)

  • Lee, In-Sun;Kim, Jin-Ho;Cho, Soo-Yeul;Shim, Sun-Bo;Park, Hye-Jin;Lee, Jin-Hee;Lee, Ji-Hyun;Hwang, In-Sun;Kim, Sung-Il;Lee, Jung-Hee;Cho, Su-Yeon;Choi, Don-Woong;Cho, Yang-Ha
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.4
    • /
    • pp.388-394
    • /
    • 2010
  • Metabolomics aims at the comprehensive, qualitative and quantitative analysis of wide arrays of endogenous metabolites in biological samples. It has shown particular promise in the area of toxicology and drug development, functional genomics, system biology and clinical diagnosis. In this study, analytical technique of MS instrument with high resolution mass measurement, such as time-of-flight (TOF) was validated for the purpose of investigation of amino acids, sugars and fatty acids. Rat urine and serum samples were extracted by selected each solvent (50% acetonitrile, 100% acetonitrile, acetone, methanol, water, ether) extraction method. We determined the optimized liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) system and selected appropriated columns, mobile phases, fragment energy and collision energy, which could search 17 metabolites. The spectral data collected from LC/TOFMS were tested by ANOVA. Obtained with the use of LC/TOFMS technique, our results indicated that (1) MS and MS/MS parameters were optimized and most abundant product ion of each metabolite were selected to be monitorized; (2) with design of experiment analysis, methanol yielded the optimal extraction efficiency. Therefore, the results of this study are expected to be useful in the endogenous metabolite fields according to validated SOP for endogenous amino acids, sugars and fatty acids.

Subchronic Oral Dose Toxicity of Freeze-dried Powder of Allomyrina dichotoma Larvae

  • Noh, Jung-Ho;Yun, Eun-Young;Park, Heejin;Jung, Kyung-Jin;Hwang, Jae Sam;Jeong, Eun Ju;Moon, Kyoung-Sik
    • Toxicological Research
    • /
    • v.31 no.1
    • /
    • pp.69-75
    • /
    • 2015
  • The objective of this study was to investigate the toxicological information of freeze-dried powder from Allomyrina dichotoma (A. dichotoma) larvae as a food ingredient. The powder, suspended in distilled water, was administered once daily by oral gavage to four groups of Sprague-Dawley (SD) rats at dose levels of 0 (vehicle control), 250, 850, and 2500 mg/kg/day. After 13 wks of repeated administration, the standard toxicological parameters such as mortality, clinical signs, body weight, food consumption, ophthalmologic examination, clinical pathology, organ weights and macro/microscopic examination were applied for assessment of general toxicity. In addition, serum IgE and histamine levels were determined to evaluate allergenicity. The freeze-dried powder from A. dichotoma larvae did not produce treatment-related changes or findings in any toxicological parameters in either sex of any dosed groups except for slight increases in serum histamine levels at 2500 mg/kg/day. The changes were considered not to be adverse since the magnitude was minimal. In conclusion, the NOAEL (No Observed Adverse Effect Level) of the freeze-dried powder from A. dichotoma larvae was determined to be 2500 mg/kg/day or more in both sexes of SD rats and it is considered a candidate to be edible material.

Effects of Mercuric Chloride on Gene Expression in NRK-52E Cells

  • Ahn, Joon-Ik;Baik, Si-Yeon;Ko, Moon-Jeong;Shin, Hee-Jung;Chung, Hye-Joo;Jeong, Ho-Sang
    • Genomics & Informatics
    • /
    • v.8 no.1
    • /
    • pp.50-57
    • /
    • 2010
  • Mercuric chloride, a model nephrotoxicant was used to elucidate time- and dose- dependent global gene expression changes associated with proximal tubular toxicity. Rat kidney cell lines NRK-52E cells were exposed for 2, 6 and 12 hours and with 3 different doses of mercuric chloride. Cell viability assay showed that mercuric chloride had toxic effects on NRK-52E cells causing 20% cell death (IC20) at $40{\mu}M$ concentration. We set this IC20 as high dose concentration and 1/5 and 1/25 concentration of LC20 were used as mid and low concentration, respectively. Analyses of microarray data revealed that 738 genes were differentially expressed (more than two-fold change and p<0.05) by low concentration of mercuric chloride at least one time point in NRK-52E cells. 317 and 2,499 genes were differentially expressed at mid and high concentration of mercuric chloride, respectively. These deregulated genes showed a primary involvement with protein trafficking (CAV2, CANX, CORO1B), detoxification (GSTs) and immunity and defense (HMOX1, NQO1). Several of these genes were previously reported to be up-regulated in proximal tubule cells treated with nephrotoxicants and might be aid in promoting the predictive biomarkers for nephrotoxicity.

Dependence Potential of Quetiapine: Behavioral Pharmacology in Rodents

  • Cha, Hye Jin;Lee, Hyun-A;Ahn, Joon-Ik;Jeon, Seol-Hee;Kim, Eun Jung;Jeong, Ho-Sang
    • Biomolecules & Therapeutics
    • /
    • v.21 no.4
    • /
    • pp.307-312
    • /
    • 2013
  • Quetiapine is an atypical or second-generation antipsychotic agent and has been a subject of a series of case report and suggested to have the potential for misuse or abuse. However, it is not a controlled substance and is not generally considered addictive. In this study, we examined quetiapine's dependence potential and abuse liability through animal behavioral tests using rodents to study the mechanism of quetiapine. Molecular biology techniques were also used to find out the action mechanisms of the drug. In the animal behavioral tests, quetiapine did not show any positive effect on the experimental animals in the climbing, jumping, and conditioned place preference tests. However, in the head twitch and self-administration tests, the experimental animals showed significant positive responses. In addition, the action mechanism of quetiapine was found being related to dopamine and serotonin release. These results demonstrate that quetiapine affects the neurological systems related to abuse liability and has the potential to lead psychological dependence, as well.

Rapid determination and quantification of hair-growth compounds in adulterated products by ultra HPLC coupled to quadrupole-orbitrap MS

  • Lee, Ji Hyun;Park, Han Na;Kang, Gihaeng;Kim, Nam Sook;Park, Seongsoo;Lee, Jongkook;Kang, Hoil
    • Analytical Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.56-64
    • /
    • 2019
  • Recently, a number of adulterated products, which are advertised as hair-growth enhancer have been emerged among those who suffer hair loss disease. For continuous control of illegal products, in this study, a rapid and sensitive method for simultaneous screening of 12 compounds that enhance hair-growth was established to protect public health by ultrahigh-performance liquid chromatography coupled to quadrupole-orbitrap mass spectrometry (UHPLC-Q-Orbitrap-MS). Fragmentation pathways of them were proposed based on $MS^2$ spectral data obtained using the established method. In this analysis, the LODs and LOQs ranged from 0.05 to 50 ng/mL and from 0.17 to 167 ng/mL, respectively. The square of the linear correlation coefficient ($R^2$) was determined as more than 0.995. The intra- and inter-assay accuracies were respective 88-112 % and 88-115 %. Their precision values were measured within 5 % (intra-day) and 10 % (inter-day). Mean recoveries of target compounds in adulterated products ranged from 84 to 115%. The relative standard deviation of stability was less than 12 % at $4^{\circ}C$ for 48 h. The method was employed to screen 14 dietary supplements advertised to be effective for the treatment of hair loss. Some of the products (~21 %) were proven to contain synthetic drugs that promote hair growth such as triaminodil, minoxidil, and finasteride.

SAFETY EVALUATION OF ADENOVIRUS-MEDIATED P16 GENE TRANSFER BY USING MICROARRAY AND 2D/MALDI-TOF

  • Park, Misun;Hoil Kang;Jaehee Pyo;Sinae Lim;Seungwan Jee;Miok Eom;Taikyung Ryeom;Kim, Okhee
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.196-196
    • /
    • 2002
  • p16INK4a tumor suppressor gene transfer in the non-small cell lung cancer cells by transduction of recombinant adenovirus (Ad5CMV-p16) resulted in significant inhibition of cancer cell growth (Anticancer Res., 1998, 18:3257-3261). As a safety concern, we have investigated gene and protein expression after transduction of adenoviral vector (Ad5CMV-p16) in human non-small cell lung cancer (A549) cells by using microarray and 2D gel electrophoresis/ MALDI-TOF.(omitted)

  • PDF

Establishment of Analytical Methods for Melamine Related Compounds in Biological Samples (생체시료 중 멜라민 화합물의 미량분석법 개발연구)

  • Han, Kyoung-Moon;Kim, Jin-Ho;Cho, Soo-Yeul;Shim, Sun-Bo;Lee, Jin-Hee;Lee, Ji-Hyun;Hwang, In-Sun;Kim, Sung-Il;Cho, Yang-Ha;Chai, Gap-Yong;Kwon, Soon-Jae;Lee, Jun-Ho
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.2
    • /
    • pp.125-141
    • /
    • 2011
  • Melamine has raised international concerns for its catastrophic health effects from tainted infant formula. This report concerns the developmental validation of a sensitive HPLC/MS/MS and GC/MS methods about melamine and cyanuric acid in human urine and serum. Analytical detection ranges of LC/MS was from 0.2 to 5.0 ng/mL and 2.0 to 60.0 ng/mL about melamine and cyanuric acid, respectively. The limits of quantification and confirmation are 0.2 ng/mL for both analytes in human urine and serum by LC/MS/MS. The range of recovery was 91.6%, and 107.6% for cyanuric acid and melamine in urine, respectively. The range of precision coefficient variation was from 2.0%, to 11.8% for cyanuric acid and melamine in urine. The range of recovery was from 94.9%, to 119.0% about cyanuric acid and melamine in serum, respectively. The range of precision coefficient variation from was 3.7%, and 13.5% about cyanuric acid and melamine in serum. Analytical detection ranges of GC/MS were 5.0 to 100.0 ng/mL about melamine and cyanuric acid, respectively. The limits of quantification and confirmation are 5.0 ng/mL for both analytes in human urine and serum by GC/MS. The range of recovery was from 83.7%, to 114.5% for cyanuric acid and melamine in urine, respectively. The range of precision coefficient variation was 3.5%, and 10.7% for cyanuric acid and melamine in urine. The range of recovery was 94.4%, and 110.7% for cyanuric acid and melamine in serum, respectively. The range of precision coefficient variation from was 3.9%, and 13.8% for cyanuric acid and melamine in serum. Several changes were taken to optimize performance by this method.