• 제목/요약/키워드: Toxicogenomics

검색결과 308건 처리시간 0.019초

Chlorella vulgaris Has Preventive Effect on Cadmium Induced Liver Damage in Rats

  • Shim, Jae-Young;Om, Ae-Son
    • Molecular & Cellular Toxicology
    • /
    • 제4권2호
    • /
    • pp.138-143
    • /
    • 2008
  • We investigated if Chlorella vulgaris (CV) has protective effects on cadmium (Cd) induced liver damage in male Sprague-Dawley (SD) rats. Forty rats, aged 5 weeks old and weighed 90-110g, were divided into a control (with Cd free water), 50 ppm of $CdCl_2$ in drinking water treated groups (Chlorella 0% diet group (Cd/CV0%), Chlorella 5% diet group (Cd/CV5%) or Chlorella 10% diet group (Cd/CV10%). All the rats had freely access to water and diet for 8 weeks. The results show that body weight gain and relative liver weight had significantly lower in Cd/CV0%-treated group than in Cd/CV-treated groups. Hepatic Cd contents showed significantly less by feeding CV (P<0.05). Cd/CV0%-treated rats had significantly (P<0.05) higher hepatic T-MTs, and Cd-MTs concentrations, compared to Cd/CV5% or Cd/CV10% treated rats. The MT I/II mRNA was expressed in the liver of all experimental rats. Its expression was more increased in Cd/CV5%- or Cd/CV10%-treated rats, compared to control and Cd-treated rats. Thus, this study suggested that CV would have a protective effect on Cd-treated liver injury by the reduction of Cd concentrations and stimulation of Cd-MT binds in the liver. However, more studies are needed to identify the proper mechanism of CV and liver toxicity.

Sol-gel Material Optimization for Aptamer Biosensors

  • Ahn, Ji-Young;Cho, Min-Jung;Lee, Se-Ram;Park, Jun-Tae;Hong, Seok-Jin;Shin, Sung-Ho;Jeong, Min-Ku;Lee, Dong-Ki;Kim, So-Youn
    • Molecular & Cellular Toxicology
    • /
    • 제4권2호
    • /
    • pp.100-105
    • /
    • 2008
  • Biochips are a powerful emerging technology for biomedical, environmental applications. Especially, making use of bioseonors in the evaluation of toxicity becomes increasingly important. For biosensor as a toxicity detection, biomolecules like antibodies or aptamers have been developed to specifically capture the toxic target molecules. In addition, the development of optimal chip materials capable of maintaining the activity of embedded biomolecules such as proteins or aptamers has proven challenging. Here, using sol-gel materials, new chip material, whose ability for immobilizing the embedded aptamers and maintaining the ability of embedded aptamers is optimal, was searched. We used sol-gel formulation screening methods previously developed and found the best formulation which shows high sensitive and specific interactions of aptamers. This study results will support the technological advancement for diagnosis and environmental sensor.

Application of Nanotechnology to Korean Black-Red Ginseng: Solubility Enhancement by Particle Size Reduction

  • Park, Seul-Ki;Kim, Yoon-Kyung;Youn, Hyung-Sun;Lee, Mi-Young
    • Molecular & Cellular Toxicology
    • /
    • 제4권1호
    • /
    • pp.52-60
    • /
    • 2008
  • In order to investigate whether the particles reduced to almost nano grade might affect the chemical and physical properties of organic materials, whole Korean Black-Red Ginseng was pulverized into almost nano size and then ginsenosides, minerals, carbohydrates, lipids and proteins in the ultrafine particles were compared with those in the regular particles as control. The mean size of the ultrafine particles was in the 350 nm range, while that of the regular particles was $127{\mu}m$. More ginsenosides, minerals, carbohydrates, lipids and proteins were detected in the ultrafine particles than in the regular particles. Interestingly, more lipids from the ultrafine particles dissolved in the water than those from the regular particles in the ethanol. Absorption and transport of carbohydrate, lipid or antioxidant activity across the intestinal wall using everted intestine sacks of mice was also enhanced by particle size reduction at the almost nano scale. More cytotoxic effect against hepatoma cell growth by ultrafine particles was also found. These results could be used as the basic data for the understanding and evaluation of the effects of organic nanomaterials on the human health.

Increased Expression of Cyclin D3 are Involved in Hepatocellular Carcinoma

  • Kim, Gi-Jin;Sun, Woong;Won, Nam-Hee;Park, Sun-Hwa
    • Molecular & Cellular Toxicology
    • /
    • 제4권2호
    • /
    • pp.93-99
    • /
    • 2008
  • Human cyclin D3 gene (CCND3) located on 6p21.1 is important for the regulation of the G1-S phase transition of the cell cycle by modulating the activity of the cyclin-dependent kinases Cdk4 and Cdk6. Because little is known about the effect of cyclin D3 in various human cancers, we evaluated the intricate relationship between expression of cyclin D3 and the process of HCC development using immunohis tochemistry and TUNEL assay on 43 paraffin embedded tissues. Cyclin D3 immunoreactivity was more frequently observed in the tumors with high histologic grade and the tumors with metastasis, and more frequently expressed in HCCs with cirrhotic background and gain of 6p21.1 when compared with those with non-neoplastic tissue. Apoptotic cells were more common in tumor with cirrhotic background, amplification of 6p21.1 and expression of cyclin D3 when compared with HCCs with lower level of cyclin D3 expression. Also, we observed that some of the cyclin D3 positive cell and apoptotic cell were co-localized. From these results, it is suggested that over-expression of cyclin D3 may contribute to more rapid cell turn-over in the background of HCC, and balance between proliferation and apoptosis is a role in the progression of HCC with cirrhotic background.

Identification of Differentially Expressed Genes (DEGs) by Malachite Green in HepG2 Cells

  • Kim, Youn-Jung;Song, Mee;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제4권1호
    • /
    • pp.22-30
    • /
    • 2008
  • Malachite Green (MG), a toxic chemical used as a dye, topical antiseptic and antifungal agent for fish, is highly soluble in water, cytotoxic to various mammalian cells and also acts as a liver tumor promoter. In view of its industrial importance and possible exposure to human beings, MG possesses a potential environmental health hazard. So, we performed with HepG2, a human hepatocellular carcinoma cell line, to identify the differentially expressed genes (DEGs) related to toxicity of MG. And we compared gene expression between control and MG treatment to identify genes that are specifically or predominantly expressed by employing annealing control primer (ACP)-based $GeneFishing^{TM}$ method. The cytotoxicity $(IC_{20})$ of MG was determined above the $0.867{\mu}M$ in HepG2 cell for 48 h treatment. And the DEGs of MG were identified that 5 out of 6 DEGs were upregulated and 1 out of 6 DEGs was down-regulated by MG. Also, MG induced late apoptosis and necrosis in a dose dependent in flow cytometric analysis. Through further investigation, we will identify more meaningful and useful DEGs on MG, and then can get the information on mechanism and pathway associated with toxicity of MG.

Evaluation of the Genetic Toxicity of Synthetic Chemicals (XVI) - in vitro Mouse Lymphoma Assay with 3 chemicals -

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제2권4호
    • /
    • pp.244-250
    • /
    • 2006
  • The detection of many synthetic chemicals used in industry that may pose a genetic hazard in our environment is of great concern at present. Since these substances are not limited to the original products, and enter the environment, they have become widespread environmental pollutants, thus leading to a variety of chemicals that possibly threaten the public health. In this respect, to regulate and to evaluate the chemical hazard will be important to environment and human health. The genotoxicity of 3 synthetic chemicals was evaluated in L5178Y $tk^{+/-}$ mouse lymphoma cells in vitro. 9H-carbazole (CAS No. 86-74-8) did not induce significant mutation frequencies both in the presence and absence of metabolic activation system. 1, 3-Dichloro-2-propanol (CAS No. 96-23-1) revealed a significant increase of mutation frequencies in the range of $625-373\;{\mu}g/mL$ in the absence of metabolic activation system and $157-79\;{\mu}g/mL$ in the presence of metabolic activation system. And also, fenpropathrin (CAS No. 64257-84-7) appeared the positive results only in the absence of metabolic activation system. Through the results of MLA tk assay with 3 synthetic chemicals in L5178Y cells in vitro, we may provide the important clues on the genotoxic potentials of these 3 chemicals.

Screening of Differentially Expressed Genes in Diesel Oil-exposed Marine Fish Using DD-PCR

  • Woo, Seon-Ock;Yum, Seung-Shic;Yim, Un-Hyuk;Lee, Yaek-Kyun
    • Molecular & Cellular Toxicology
    • /
    • 제2권4호
    • /
    • pp.251-256
    • /
    • 2006
  • The exploration of genes which expressions are changed by exposure to ecotoxicants or pollutants can provide the important information about the reaction mechanisms in the body as well as adaptation to exterior stimulus or environmental changes. Also they can be developed as biomarkers for the detection of environmental pollution. Differential display polymerase chain reaction (DD-PCR) technique has been usefully used to hunt the clones which expressions are up-regulated or down-regulated by exterior changes and this study aimed to search for those clones in diesel oil-exposed rockfish (Sebastes schlegeli) using DD-PCR. The RNA isolated from liver of 20 ppb diesel oil-exposed rockfish was used for screening of the differentially displayed genes and total 44 differentially expressed genes (DEG) are detected then their nucleotide sequences were analyzed. The present data provided the general information about the effect of diesel oil contamination on marine organism and further more the primary step in development of new biomarkers for marine environmental pollution or ecotoxicological stresses.

Evaluation of Estrogenic Effects of Phthalate Analogues Using in vitro and in vivo Screening Assays

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제2권2호
    • /
    • pp.106-113
    • /
    • 2006
  • Phthalate analogues are a plasticizer and solvent used in industry. Phthalates were classified in the category of "suspected" endocrine disruptors. The purpose of our study was to screen and elucidate the endocrine disrupting activity of seven phthalate analogues. E-screen assay was performed in MCF-7 human breast cancer cells with seven phthalate analogues. In this cell proliferation assay, benzyl butyl phthalate (BBP) and dibutyl phthalate (DBP) showed high estrogenic activity. Their relative proliferation efficiencies (RPE) were 109 and 106%, respectively. In vitro estrogen receptor (ER) binding assay, BBP, di-n-octyl phthalate (DOP) and dinonyl phthalate (DNP) showed weak relative binding affinity (RBA: 0.02%) compared to $17{\beta}-estradiol\;(E2)$ (RBA: 100%). In uterotrophic assay, E2 produced a significant increase, whereas four tested phthalate analogues had potential estrogenic effects in vitro did not increased in uterus weight in immature rats. From these results, we demonstrated that phthalate analogues exhibit weak estrogenic activity in vitro assays at high concentrations. Although phthalates induced an increase in MCF-7 cell proliferation by an estrogenic effect, they could not induce a uterus weight increase in vivo. From these, we may suggest that these phthalate analogues are easily metabolized to inactive forms in vivo. Further investigation in other in vitro and in vivo experimental systems might be required.

Evaluation of the Genetic Toxicity of Synthetic Chemicals (XIV)-in vitro Chromosomal Aberration Assay with 11 Chemicals in Chinese Hamster Lung Cells

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제2권2호
    • /
    • pp.89-96
    • /
    • 2006
  • The detection of many synthetic chemicals used in industry that may pose a genetic hazard in our environment is of great concern at present. Since these substances are not limited to the original products, and enter the environment, they have become widespread environmental pollutants, thus leading to a variety of chemicals that possibly threaten the public health. In this respect, to regulate and to evaluate the chemical hazard will be important to environment and human health. The clastogenicity of 11 synthetic chemicals was evaluated in Chinese hamster lung fibroblast cells in vitro. 1-Chloro-3-bromopropane CAS No. 109-70-6) induced chromosomal aberrations with significance at the concentration of $185.0\;{\mu}g/mL\;and\;1,600\;{\mu}g/mL$ both in the presence and absence of metabolic activation system, respectively. Triphenyl phosphite (CAS No. 101-02-0), which is one of the most cytotoxic chemical among 11 chemicals tested revealed no clastogenicity in the range of $95.0-4.9\;{\mu}g/mL$ both in the presence and absence of metabolic activation system. From the results of chromosomal aberration assay with 11 synthetic chemicals in Chinese hamster lung cells in vitro, 1-chloro-3-bromopropane revealed a positive clastogenic result in this study.

Identification of Immune Responsive Genes on Benzene, Toluene and o-Xylene in Jurkat Cells Using 35 k Human Oligomicroarray

  • Sarma, Sailendra Nath;Kim, Youn-Jung;Jeon, Hee-Kyung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제2권4호
    • /
    • pp.229-235
    • /
    • 2006
  • Volatile organic compounds (VOCs) are a major component of urban air pollution. It is documented that low exposure levels of VOCs induce alterations in immune reactivity resulting in a subsequent higher risk for the development of allergic reactivity and asthma. Despite these facts, there are few reports on the affected primary target and the underlying effective causal mechanisms. So in this study, to better understand the risk of BTX (benzene, toluene and o-xylene) which are the major VOCs and to identify novel biomarkers on immune response to these VOCs exposure in human T lymphocytes, we performed the toxicogenomic study by analyzing of gene expression profiles using 35 k human oligo-microarray. BTX generated specific gene expression patterns in Jurkat cell line. By clustering analysis, we identified some genes as potential markers on immuno-modulating effects of BTX. Four genes of these, HLA-DOA, ITGB2, HMGA2 and 5TAT4 were the most significantly affected by BTX exposure. Thus, this study suggests that these differentially expressed immune genes may play an important role in the pathogenesis on BTX exposure and have significant potential as novel biomarkers of exposure, susceptibility and response to BTC.