• 제목/요약/키워드: Toxic zinc

검색결과 98건 처리시간 0.021초

매염제인 ZnSO4의 피부독성에 대한 멍석딸기 추출물의 항산화 및 미백효과 (Antioxidative and Whitening Effects of Rubus parvifolius L. Extract on Dermal Cytotoxicity of ZnSO4, Mordant)

  • 손영우;유선미
    • 융합정보논문지
    • /
    • 제11권5호
    • /
    • pp.199-205
    • /
    • 2021
  • 본 연구는 매염제인 황산아연(ZnSO4)의 피부독성을 배양 피부세포주인 SK-MEL-3 세포를 재료로 산화적 손상측면에서의 조사와 함께 ZnSO4의 독성에 대한 멍석딸기(RP)의 영향을 항산화와 미백효과 측면에서 알아보았다. 본 실험을 위하여, 세포생존율, DPPH-라디칼 소거능 및 melanin합성 저해능을 분석하였다. 본 연구에서 ZnSO4는 농도 의존적으로 세포생존율을 유의하게 감소시켰으며, XTT50값이 173.3 uM로 중간 독성으로 나타났다. 또한, 항산화제의 일종인 ascorbic acid는 ZnSO4에 의하여 손상된 세포생존율을 유의하게 증가시켰다. 한편, ZnSO4의 독성에 대한 RP 추출물의 영향에서, RP 추출물 처리는 유의한 세포생존율의 증가와 함께 DPPH-라디칼 소거능과 melanin합성 저해능을 통하여 항산화와 미백효과를 나타냈다. 결론적으로, RP 추출물과 같은 천연성분은 향후 항산화제와 미백제로서의 대체물질 개발에 있어 활용적 가치가 클 것으로 생각된다.

해산로티퍼(Brachionus plicatilis)의 생존 및 개체군 성장률을 이용한 신방오도료(Zinc undecylenate)의 독성평가 (Toxicity Assessment of Antifouling Agent using the Survival and Population Growth Rate of Marine Rotifer, Brachionus plicatilis)

  • 황운기;최훈;박윤호;박나영;장수정;이승민;최윤석;양준용;이주욱
    • 환경생물
    • /
    • 제36권3호
    • /
    • pp.392-399
    • /
    • 2018
  • 해산로티퍼(Brachionus plicatilis)의 생존 및 개체군 성장률(r)을 사용하여 Zinc undecylenate (ZU)에 대한 독성평가를 실시하였다. 24 h 동안 ZU에 노출된 B. plicatilis의 생존율은 실험 최고농도 $100mg\;L^{-1}$에서도 영향이 나타나지 않았으나, ZU에 72 h 노출된 개체군 성장률(r)은 농도 의존적으로 감소하는 경향을 나타내, $12.5mg\;L^{-1}$에서 유의적인 감소를 나타냈고 최고농도 $50.0mg\;L^{-1}$에서 개체군 성장률이 90% 이상 감소되었다. ZU에 노출된 B. plicatilis의 개체군 성장률의 반수영향농도($EC_{50}$)값은 $26.4mg\;L^{-1}$, 무영향농도(NOEC)는 $6.3mg\;L^{-1}$, 최소영향농도(LOEC)는 $12.5mg\;L^{-1}$로 나타났다. 자연생태계 내에서 ZU 물질이 해수 중에서 $12.5mg\;L^{-1}$ 이상을 초과하여 나타낼 때 B. plicatilis와 같은 동물성플랑크톤의 개체군 성장률이 영향을 받을 것으로 판단되며, 이러한 연구결과는 신방오도료물질의 생태안정성 평가를 위한 기준치 설정 및 다른 방오도료물질과의 독성치를 비교할 수 있는 유용한 자료로 활용될 것으로 판단된다.

Heavy Metal Contamination in Surface Water Used for Irrigation: Functional Assessment of the Turag River in Bangladesh

  • Arefin, M. Taufique;Rahman, M. Mokhlesur;Wahid-U-Zzaman, M.;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • 제59권1호
    • /
    • pp.83-90
    • /
    • 2016
  • The aim of the present study was to evaluate the degree of metal contamination of the Turag River water and its suitability for irrigation. Twenty water samples were analyzed for physicochemical parameters and metals viz., calcium, magnesium, potassium (K), sodium, copper (Cu), zinc (Zn), iron (Fe), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), and nickel (Ni). All water samples were slightly alkaline to alkaline. Regarding electrical conductivity (EC), all samples were suitable for crop in soils with moderate permeability and leaching. Water samples were medium salinity and low alkalinity hazard classes. In terms of total dissolved solids (TDS), all samples were classified as freshwater. As per sodium adsorption ratio (SAR) and soluble sodium percentage (SSP), all samples were classified as excellent. No residual sodium carbonate (RSC) was detected in any of the samples, indicating suitability for irrigation; and all samples were considered very hard. Cr and Mn contents in all samples were above FAO guideline values and, therefore, these metals were considered toxic. Zn, Cu, Pb, Cd, and Ni concentrations were below acceptable limit for irrigation and do not pose a threat to soil environment. Significant relationships were found between EC and TDS, SAR and SSP, SAR and RSC, and SSP and RSC. The combinations of ions such as K-Zn, K-Fe, K-Cu, K-Mn, K-Pb, Zn-Fe, Zn-Cu, Zn-Mn, Fe-Mn, Cu-Mn, Cu-Pb and Mn-Pb exhibited significant correlation. This study revealed that Turag River water samples are contaminated with Cr and Mn. This fact should not be ignored because water contamination by metals may pose a threat to human health through food chain.

Hazardous Air Pollutants Emission Characteristics from Cement Kilns Co-burning Wastes

  • Pudasainee, Deepak;Kim, Jeong-Hun;Lee, Sang-Hyeob;Cho, Sung-Jin;Song, Geum-Ju;Seo, Yong-Chil
    • Environmental Engineering Research
    • /
    • 제14권4호
    • /
    • pp.212-219
    • /
    • 2009
  • Emission characteristics of air pollutants from three commercially operating cement kilns co-burning waste were investigated. The major heavy metals emitted were mercury (Hg), zinc (Zn), nickel (Ni), chromium (Cr), lead (Pb), cadmium (Cd), and arsenic (As) Removal efficiency of the bag filter was above 98.5% for heavy metals (except Hg), and above 60% for Hg. Higher fractions of heavy metals entering the bag filter were speciated to cement kiln dust. On average, 3.3% of the -heavy metals of medium and low toxicity (Pb, Ni, and Cr) entering the bag filter were released into the atmosphere. Among highly toxic heavy metals, 0.14% of Cd, 0.01% of As, and 40% of Hg entering the bag filter were released into the atmosphere. In passing through the bag filter, the proportion of oxidized Hg in all cases increased. Emission variations of hazardous air pollutants in cement kilns tested were related to raw materials, fuel, waste feed and operating conditions. Volatile organic compounds detected in gas emissions were toluene, acrylonitrile benzene, styrene, 1,3-butadiene, and methylene chloride. Although hazardous air pollutants in emissions from cement kilns co-burning waste were within the existing emission limit, efforts are required to minimize their levels.

고 안정성 전구체를 사용한 InP/ZnS 반도체 나노입자 합성 및 발광 특성 향상 (Improved Luminescent Characterization and Synthesis of InP/ZnS Quantum Dot with High-Stability Precursor)

  • 이은진;문종우;김양도;신평우;김영국
    • 한국분말재료학회지
    • /
    • 제22권6호
    • /
    • pp.385-390
    • /
    • 2015
  • We report a synthesis of non-toxic InP nanocrystals using non-pyrolytic precursors instead of pyrolytic and unstable tris(trimethylsilyl)phosphine, a popular precursor for synthesis of InP nanocrystals. In this study, InP nanocrystals are successfully synthesized using hexaethyl phosphorous triamide (HPT) and the synthesized InP nanocrystals showed a broad and weak photoluminescence (PL) spectrum. As synthesized InP nanocrystals are subjected to further surface modification process to enhance their stability and photoluminescence. Surface modification of InP nanocrystals is done at $230^{\circ}C$ using 1-dodecanethiol, zinc acetate and fatty acid as sources of ZnS shell. After surface modification, the synthesized InP/ZnS nanocrystals show intense PL spectra centered at the emission wavelength 612 nm through 633 nm. The synthesized InP/ZnS core/shell structure is confirmed with X-ray diffraction (XRD) and Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES). After surface modification, InP/ZnS nanocrystals having narrow particle size distribution are observed by Field Emission Transmission Electron Microscope (FE-TEM). In contrast to uncapped InP nanocrystals, InP/ZnS nanocrystals treated with a newly developed surface modified procedure show highly enhanced PL spectra with quantum yield of 47%.

광촉매를 병합한 플라즈마 공정을 이용한 폐수에 함유된 살충제 분해 (Degradation of Pesticides in Wastewater Using Plasma Process Coupled with Photocatalyst)

  • 장두일;김길성;현영진
    • 공업화학
    • /
    • 제24권1호
    • /
    • pp.87-92
    • /
    • 2013
  • 광촉매 혼성 저온 플라즈마는 폐수에 함유된 유기물을 분해시키는 효과적인 기술이다. 본 연구에서는 광촉매가 결합된 특별히 설계된 유전체 방전 시스템을 골프장이나 감귤농가에서 흔히 살포되는 디크로보스, 카보퓨란 및 메치다치온 살충제의 분해에 적용하였다. 단독 및 병합 시스템에서 살충제의 분해를 평가하였다. 단독 시스템은 UV의 차폐 유무 및 산소기체와 공기에 의한 오존(각종 반응 활성종들 포함) 플라즈마를 이용하였다. 혼성 시스템은 UV로 활성화된 산화아연, 이산화티타늄과 그래파이트 옥사이드와 결합하여 공기에 의한 플라즈마 반응에 적용하였다. 그래파이트 옥사이드는 모사 허머스 법으로 제조하여 FT-IR 분광기로 성능을 측정하였다. 반응시간 60 min에서 UV를 차폐하고 공기를 이용한 플라즈마 반응에 의한 분해성능과 비교하였으며, UV로 활성화된 그래파이트 옥사이드(0.01 g/L)와 결합된 플라즈마 반응은 디크로보스와 카보퓨란의 각각 100% 분해도를 보였다. UV를 활용한 광촉매 혼성 플라즈마는 살충제를 분해시키는 효과적인 대안으로 입증되었다.

Biocompatibility and Surface Characteristics of PEO-treated Ti-40Ta-xZr Alloys for Dental Implant Materials

  • Yu, Ji-Min;Cho, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.23-23
    • /
    • 2018
  • In this study, new titanium alloys were prepared by adding elements such as tantalum (Ta), zirconium (Zr) and the like to complement the biological, chemical and mechanical properties of titanium alloys. The Ti-40Ta-xZr ternary alloy was formed on the basis of Ti-40Ta alloy with the contents of Zr in the contents of 0, 3, 7 and 15 wt. %. Plasma electrolytic oxidation (PEO), which combines high-voltage sparks and electrochemical oxidation, is a novel method to form ceramic coatings on light metals such as Ti and its alloys. These oxide film produced by the electrochemical surface treatment is a thick and uniform porous form. It is also composed of hydroxyapatite and calcium phosphate-based phases, so it has the characteristics of bone inorganic, non-toxic and very high bioactivity and biocompatibility. Ti-40Ta-xZr alloys were homogenized in an Ar atmosphere at $1050^{\circ}C$ for 1 hour and then quenched in ice water. The electrochemical oxide film was applied by using a power supply of 280 V for 3 minutes in 0.15 M calcium acetate monohydrate ($Ca(CH_3COO)_2{\cdot}H_2O$) and 0.02 M calcium glycerophosphate ($C_3H_7CaO_6P$) electrolyte. A small amount of 0.0075M zinc acetate and magnesium acetate were added to the electrolyte to enhance the bioactivity. The mechanical properties of the coated surface of Ti-40Ta-xZr alloys were evaluated by Vickers hardness, roughness test, and elastic modulus using nano-indentation, and the surface wettability was evaluated by measuring the contact angle of the coated surface. In addition, cell activation and differentiation were examined by cell culture of HEK 293 (Human embryonic kidney 293) cell proliferation. Surface properties of the alloys were analyzed by scanning electron microscopy(FE-SEM), EDS, and X-ray diffraction analysis (XRD).

  • PDF

Determination of Aflatoxin M1 and Heavy Metals in Infant Formula Milk Brands Available in Pakistani Markets

  • Akhtar, Saeed;Shahzad, Muhammad Arif;Yoo, Sang-Ho;Ismail, Amir;Hameed, Aneela;Ismail, Tariq;Riaz, Muhammad
    • 한국축산식품학회지
    • /
    • 제37권1호
    • /
    • pp.79-86
    • /
    • 2017
  • Aflatoxin $M_1$ ($AFM_1$) after its bioconversion from aflatoxin $B_1$ in animal liver becomes the part of milk while heavy metals get entry into milk and milk products during handling in the supply chain. Aflatoxin $M_1$ and heavy metals being toxic compounds are needed to be monitored continuously to avoid any ailments among consumers of foods contaminated with such toxicants. Thirteen commercially available infant formula milk (IFM) brands available in Pakistani markets were analyzed for the quantitative determination of $AFM_1$ and heavy metals through ELISA and atomic absorption spectrophotometer, respectively. $AFM_1$ was found positive in 53.84% samples while 30.76% samples were found exceeding the maximum EU limit i.e. $0.025 {\mu}g/kg$ for $AFM_1$ in IFM. Heavy metals lead (Pb) and cadmium (Cd) were found below the detection limits in any of the sample, whereas the concentrations of iron (Fe), zinc (Zn) and nickel (Ni) ranged between 45.40-97.10, 29.72-113.50 and <$0.001-50.90 {\mu}g/kg$, respectively. The concentration of Fe in all the tested brands was found in normal ranges while the concentrations of Zn and Ni were found exceeding the standard norms. Elevated levels of $AFM_1$, Zn and Ni in some of the tested IFM brands indicated that a diet completely based on these IFM brands might pose sever health implications in the most vulnerable community i.e., infants.

Cytotoxicity of Ultra-pure TiO2 and ZnO Nanoparticles Generated by Laser Ablation

  • Jeong, Minju;Park, Jeong Min;Lee, Eun Jeong;Cho, Yea Seul;Lee, Chunghyun;Kim, Jeong Moo;Hah, Sang Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3301-3306
    • /
    • 2013
  • This paper aims to address the cellular toxicity of ultra-pure titanium dioxide ($TiO_2$) and zinc oxide (ZnO) nanoparticles (NPs) frequently employed in sunscreens as inorganic physical sun blockers to provide protection against adverse effects of ultraviolet (UV) radiation including UVB (290-320 nm) and UVA (320-400 nm). In consideration that the production and the use of inorganic NPs have aroused many concerns and controversies regarding their safety and toxicity and that microsized $TiO_2$ and ZnO have been increasingly replaced by $TiO_2$ and ZnO NPs (< 100 nm), it is very important to directly investigate a main problem related to the intrinsic/inherent toxicity of these NPs and/or their incompatibility with biological objects. In the present study, we took advantage of the laser-assisted method called laser ablation for generation of $TiO_2$ and ZnO NPs. NPs were prepared through a physical process of irradiating solid targets in liquid phase, enabling verification of the toxicity of ultra-pure NPs with nascent surfaces free from any contamination. Our results show that $TiO_2$ NPs are essentially non-poisonous and ZnO NPs are more toxic than $TiO_2$ NPs based on the cell viability assays.

보리 유식물에 처리한 수은의 분포 및 독성 연구 (Toxic Effects and Distribution of Mercury in Barley Seedlings)

  • 이춘환;장호식
    • 한국환경과학회지
    • /
    • 제1권1호
    • /
    • pp.13-21
    • /
    • 1992
  • The inhibitory effects of mercury ions on the growth of barley seedlings were studied and the distribution of metal elements in the organs of treated plants was investigated by using synchrotron radiation induced X-ray emission (SRIXE). Although the treatment of mercury ions caused growth inhibition, the mercury-specific increase in variable fluorescence and the abolishment of energy-dependent quenching in broken barley chloroplasts as shown by Moon et at. (1992) were not observed in the leaves of growth-inhibited seedlings. Instead the treatment of mercury decreased Fmax and Fo values. However, Fmax/Fo ratio and photochemical and nonphotochemical quenching coefficients were not affected significantly. By SRIXE analysis of $10\mu\textrm{m}$ mercury chloride treated seedlings, accumulation of mercury in roots was observed after 1 hour of treatment and similar concentration was sustained for 48 hours. Relative contents of mercury was high in roots and underground nodes where seeds were attachedl but was very low in leaves. Iron and zinc were also distributed mainly in the lower parts of the seedlings. However after 72 hours of treatment the contents of these metals in roots decreased and their distribution became more uniform, which may lead to death of the plants. These results suggest that the observed inhibitory effects on barley seedlings upto 48 hours after the treatment is not due to direct damages in the photosynthetic apparatus, but due to its accumulation in roots and the consequent retardation of the growth of barley seedlings. The decrease in Fmax and Fo is probably due to the decrease in chlorophyll and protein contents caused by the retardation of growth. The observed slow expansion of primary leaves could be also explained by the retardation of growth, but the fluorescence induction pattern from the leaves did not show characteristic symptoms of leaves under water stress.

  • PDF