• Title/Summary/Keyword: Toxic zinc

Search Result 98, Processing Time 0.031 seconds

A Study on the Heavy Metal Contents in Fish and Sediments of the Mankyung River (일부 河川流域의 淡水魚와 沈積土의 중금속 함량에 관한 연구)

  • 황인담;기노석;양기승;이재형;김남송
    • Journal of Environmental Health Sciences
    • /
    • v.15 no.1
    • /
    • pp.33-49
    • /
    • 1989
  • Pollution in the rivers has received considerable attention in recent years, particullary with reference to the effect due to increasing concentration of heavy metals. The metals are toxic to the ecosystem as a whole and to man in particular, since he is at the end of a variety of food chains by virture of his varigated diet. In addition, numerous laboratory tests have established that certain metals, such as Cd, pose a threat to a wide variety of aquatic organisms at concentrations as low as a few $\mu$g/1. Before the biological effects of heavy metals in impacted ecosystems can be completely assessed, however it is necessary to provide data on the concentration of heavy metals in such systems. This study was performed to investigate the concentration level of heavy metals in water, fish and sediments from upstream ($S_1-S_4$) to downstream ($S_5-S_9$) of the Mankyung river. Samples of water, fish, and sediments were collected along the tributaries of the Mankyung from September to October in 1987 and analyzed for lead, cadmium, copper, and zinc by atomic absorption spectrophotometer. From the data presented in this study, we can infer that the concentrations of the heavy metals investigated both in water and sediments are similar to those found in literature for unpolluted regions. The results obtained from the analysis of the edible tissue of the C. auratus show low concentration levels of the four heavy metals investigated. We conclude that the area is still relatively unpolluted and recommended continuing the monitoring of heavy metal concentrations to improve our understanding of their cycle in the river environment.

  • PDF

Evaluation of contamination for the Andong-dam sediment and a magnetic separation for reducing the contamination level

  • Hong, H.P.;Kwon, H.W.;Kim, J.J.;Ha, D.W.;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.31-35
    • /
    • 2019
  • Andong-dam was built up in 1967 and it is one of the biggest dams in Korea. Previous studies showed that the sediments are highly contaminated with heavy metals such as arsenic, cadmium, and lead. Many research projects are going on to find out the source of the contamination, to evaluate the toxicities to ecosystem, to estimate the volume of sediment to be treated and to find out a good remediation method. Reports show that the sediment is highly contaminated and the main contamination source is supposed to be abandoned mines and a zinc refinery located upper stream of the river. A magnetic separation has been tested as a treatment method for the dredged sediment. Lab scale test showed that the magnetically captured portion is about 10% in weight but the contamination of heavy metal is much higher than the contamination of the passed portion. This indicates that a magnetic separation could be applied for the purpose of reduction of sediment to be treated and for increasing the volume of low toxic sediments which can be dumped as general waste. A magnetic separation using a HGMS has been tested for the sediment with variable magnetic field and the results showed the higher magnetic field increase the captured portion but the concentrating effect of heavy metal was weakened. Further study is needed to establish a useful technology and optimization between decontamination and reduction of sediment volume.

Biocompatibility and Bioactivity of Four Different Root Canal Sealers in Osteoblastic Cell Line MC3T3-El

  • Jun, Nu-Ri;Lee, Sun-Kyung;Lee, Sang-Im
    • Journal of dental hygiene science
    • /
    • v.21 no.4
    • /
    • pp.243-250
    • /
    • 2021
  • Background: Endodontic sealers or their toxic components may become inflamed and lead to delayed wound healing when in direct contact with periapical tissues over an extended period. Moreover, an overfilled sealer can directly interact with adjacent tissues and may cause immediate necrosis or further resorption. Therefore, the treatment outcome conceivably depends on the endodontic sealer's biocompatibility and osteogenic potential. This study aimed to evaluate the cell viability and osteogenic effects of four different sealers in osteoblastic cells. Methods: AH Plus (resin-based sealer), Pulp Canal Sealer EWT (zinc oxide-eugenol sealer), BioRoot RCS (calcium silicate-based sealer), and Well-Root ST (MTA-based calcium silicate sealer) were mixed strictly according to the manufacturer's instructions, and dilutions of sealer extracts (1/2, 1/5 and 1/10) were determined. Cell viability was measured using the water-soluble tetrazolium-8 (WST-8) assay. Differentiation was assessed by alkaline phosphatase (ALP) activity and mineralized nodule formation by Alizarin Red S staining. Results: The cell viability of the extracts derived from the sealers excluding Well-Root ST was concentration dependent, with sealer extracts having the least viability at a 1/2 dilution. At sealer extract dilution of 1/10, the test groups showed the same survival rate as that control group, with the exception of BioRoot RCS. Among all experimental groups, BioRoot RCS showed the highest cell viability after 48 hours. The ALP activity was significantly higher in a concentration-dependent manner. Furthemore, all four materials promoted ALP activity and mineralized nodule formation compared to the control at 1/10 dilutions. Conclusion: This is the first study to highlight the differences in biological activity of these four materials. These results suggest that the composition of root canal sealers appears to alter the form of biocompatibility and osteoblastic differentiation.

Cellular internalization effect of Ara27 in various cell lines

  • Minseo Kim;Sangkyu Park;Jeongmin Seo;Sangho Roh
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.239-245
    • /
    • 2022
  • Protein and peptide candidates are screened to apply therapeutic application as a drug. Ensuring that these candidates are delivered and maximized effectiveness is still challenging and a variety of studies are ongoing. As drug delivery system vehicles, cell-penetrating peptide (CPP) can deliver various kinds of cargo into the cell cytosol. In a previous study, we developed Ara27 CPP, which are a zinc knuckle family protein of Arabidopsis, and confirmed internalization in human dermal fibroblasts and human dental pulp stem cells at low concentration with short time treatment condition without any toxicity. Ara27, an amphipathic CPP, could be modified and utilized in the biomedical field excluding the risk of toxicity. Therefore, we would like to confirm the non-toxic induced penetrating ability of Ara27 in various cell lines. The purpose of this study was to screen the cell internalization ability of Ara27 in various cell lines and to confirm Ara27 as a promising core CPP structure. First, Ara27 was screened to confirm non-toxicity concentration. Then, fluorescence-labeled Ara27 was treated on human normal cell lines, cancer cell lines and animal cell lines to identify the cellular internalization of Ara27. Ara27 was well intracellular localized in all cell lines and the intensity of fluorescence was remarkably increased in time pass manner. These results indicate that Ara27 has the potential as a core structure for applications in various drug delivery systems.

Influence of Soil pH, Total and Mobile Contents on Copper and Zinc Uptake by Lettuce Grown in Plastic Film Houses (시설재배지 토양 pH와 전함량 및 이동태 함량이 상추의 구리와 아연 흡수에 미치는 영향)

  • Kim, Rog-Young;Sung, Jwa-Kyung;Lee, Ju-Young;Jang, Byoung-Choon;Ha, Sang-Keun;Lee, Jong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1042-1047
    • /
    • 2011
  • Copper and Zinc are essential trace elements for all living organisms. When presenting in excess amount in soils, however they can be toxic to plants. In order to examine the transfer of Cu and Zn from soils to plants and to predict their contents in plants using soil factors, we investigated total and mobile contents of Cu and Zn in soils and their uptake by lettuce (Lactuca sativa L.) in plastic film houses. Total Cu and Zn contents in soils were $17.5{\sim}65.9mg\;kg^{-1}$ (mean: $39.3mg\;kg^{-1}$) and $63.2{\sim}200mg\;kg^{-1}$ (mean: $137mg\;kg^{-1}$), respectively. Mobile Cu and Zn contents in soils were $(0.04){\sim}0.55mg\;kg^{-1}$ (mean: $0.18mg\;kg^{-1}$) and $(0.05){\sim}2.62mg\;kg^{-1}$ (mean: $0.47mg\;kg^{-1}$), respectively. Soil pH ranged from 5.4 to 7.3 and OM from 24.1 to $59.9g\;kg^{-1}$. Mean Cu contents in leaves and roots of lettuce were 9.20 and $17.2mg\;kg^{-1}$, respectively which showed that Cu was accumulated mainly in root parts of lettuce and not easily transported to leaves. In contrast, Zn was fairly evenly distributed in leaves and roots with mean values of 54.5 and $56.7mg\;kg^{-1}$, indicating relative high mobility of Zn in lettuce. Transfer factors of Cu and Zn from soil total contents to roots and leaves of lettuce ($TFS_tR$ and $TFS_tL$) were between 0.1 and 1, while transfer factors from soil mobile contents to roots and leaves ($TFS_mR$ and $TFS_mL$) were between 10 and 1000. Transfer factors of Zn were higher than those of Cu, showing Zn was more easily absorbed by plants than Cu. Cu and Zn uptake was stronger influenced by soil pH and mobile contents than total contents and OM and could be significantly described by multiple regression equations including soil pH and soil mobile contents as variables.

Optimization of ZnO-based transparent conducting oxides for thin-film solar cells based on the correlations of structural, electrical, and optical properties (ZnO 박막의 구조적, 전기적, 광학적 특성간의 상관관계를 고려한 박막태양전지용 투명전극 최적화 연구)

  • Oh, Joon-Ho;Kim, Kyoung-Kook;Song, Jun-Hyuk;Seong, Tae-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.42.2-42.2
    • /
    • 2010
  • Transparent conducting oxides (TCOs) are of significant importance for their applications in various devices, such as light-emitting diodes, thin-film solar cells, organic light-emitting diodes, liquid crystal displays, and so on. In order for TCOs to contribute to the performance improvement of these devices, TCOs should have high transmittance and good electrical properties simultaneously. Sn-doped $In_2O_3$ (ITO) is the most commonly used TCO. However, indium is toxic and scarce in nature. Thus, ZnO has attracted a lot of attention because of the possibility for replacing ITO. In particular, group III impurity-doped ZnO showed the optoelectronic properties comparable to those of ITO electrodes. Al-doped ZnO exhibited the best performance among various doped ZnO films because of the high substitutional doping efficiency. However, in order for the Al-doped ZnO to replace ITO in electronic devices, their electrical and optical properties should further significantly be improved. In this connection, different ways such as a variation of deposition conditions, different deposition techniques, and post-deposition annealing processes have been investigated so far. Among the deposition methods, RF magnetron sputtering has been extensively used because of the easiness in controlling deposition parameters and its fast deposition rate. In addition, when combined with post-deposition annealing in a reducing ambient, the optoelectronic properties of Al-doped ZnO films were found to be further improved. In this presentation, we deposited Al-doped ZnO (ZnO:$Al_2O_3$ = 98:2 wt%) thin films on the glass and sapphire substrates using RF magnetron sputtering as a function of substrate temperature. In addition, the ZnO samples were annealed in different conditions, e.g., rapid thermal annealing (RTA) at $900^{\circ}C$ in $N_2$ ambient for 1 min, tube-furnace annealing at $500^{\circ}C$ in $N_2:H_2$=9:1 gas flow for 1 hour, or RTA combined with tube-furnace annealing. It is found that the mobilities and carrier concentrations of the samples are dependent on growth temperature followed by one of three subsequent post-deposition annealing conditions.

  • PDF

Study on the Contamination Characteristics of Pollutants at Various type of Abandoned Metal Mines (폐금속 광산의 유형별 오염특성에 관한 연구)

  • Lee, Jong-Deuk;Kim, Tae Dong;Kim, Sun Gu;Kim, Hee-Joung
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.93-108
    • /
    • 2013
  • This study is aimed to prepare the effective detail survey methods(Phase II) of abandoned metal mines through the contamination assessment for mine types and facilities in the abandoned metal mine areas. The study sites of 12 abandoned mines are located in Gyeonggi-do and Gangwon-do and those were chosen among 310 sites that the Phase II survey was conducted from 2007 to 2009 after considering the results of Phase I for abandoned mines scattered all over the country. 12 study sites were classified into four types; Type I sites only have pit mouth. Type II sites have pit mouth and mine-waste field. Type III sites have pit mouth and tailing sorting field. Type IV sites have pit mouth, tailing sorting field and concentrator(s). In forest land, paddy soil and farm land of Type I, As and Cd were showed average concentration, and Cu and Pb were high on the pit mouth area in one mines where the pit mouth was developed within 500 m. In the mines of Type II, Cu and Pb were showed average concentration too, but As and Cd were slightly high in pit mouth and mine-waste field. The mines of Type III which had grinding particle process through physical separation milling or hitting showed similar tendency with Type II. However, mines of Type IV pit mouth, mine-waste field and showed various results depending on defining the contamination sources. For example, if contamination source was pit mouth, the mixed results of Type I, II, II were showed. In tailing sorting field which was regarded as the most important source and having high mobility, however, if there were no facilities or it was difficult to access directly, field sampling was missed occasionally during phase I and phase II survey. For that reason, the assessment for tailing sorting field is missed and it leads to completely different results. In the areas of Type I mines, the concentration of heavy metals exceeded precautionary standards of soil contamination or not within 1,000 meters of pit mouth. Nickel(Ni) was the largest factor of the heavy metal contamination in this type. The heavy metals except Arsenic(As) were shown high levels of concentration in Type II areas, where pit mouth and mine-waste field were operated for making powder in upriver region; therefore, to the areas in the vicinity of midstream and downstream, the high content of heavy metals were shown. The tendency of high level of heavy metals and toxic materials contained in flotation agent used during sorting process were found in soil around sorting and tailing field. In the abandoned-pit-mouth area, drygrinding area and tailing sorting field area, the content of Cupper(Cu) and Zinc(Zn) were higher than other areas. Also, the contaminated area were larger than mine reclamation area(2,000 m) and the location of tailing sorting field was one of the important factors to estimate contaminated area.

Evaluation of Toxicity and Gene Expression Changes Triggered by Oxide Nanoparticles

  • Dua, Pooja;Chaudhari, Kiran N.;Lee, Chang-Han;Chaudhari, Nitin K.;Hong, Sun-Woo;Yu, Jong-Sung;Kim, So-Youn;Lee, Dong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2051-2057
    • /
    • 2011
  • Several studies have demonstrated that nanoparticles (NPs) have toxic effects on cultured cell lines, yet there are no clear data describing the overall molecular changes induced by NPs currently in use for human applications. In this study, the in vitro cytotoxicity of three oxide NPs of around 100 nm size, namely, mesoporous silica (MCM-41), iron oxide ($Fe_2O_3$-NPs), and zinc oxide (ZnO-NPs), was evaluated in the human embryonic kidney cell line HEK293. Cell viability assays demonstrated that 100 ${\mu}g/mL$ MCM-41, 100 ${\mu}g/mL$ $Fe_2O_3$, and 12.5 ${\mu}g/mL$ ZnO exhibited 20% reductions in HEK293 cell viability in 24 hrs. DNA microarray analysis was performed on cells treated with these oxide NPs and further validated by real time PCR to understand cytotoxic changes occurring at the molecular level. Microarray analysis of NP-treated cells identified a number of up- and down-regulated genes that were found to be associated with inflammation, stress, and the cell death and defense response. At both the cellular and molecular levels, the toxicity was observed in the following order: ZnO-NPs > $Fe_2O_3$-NPs > MCM-41. In conclusion, our study provides important information regarding the toxicity of these three commonly used oxide NPs, which should be useful in future biomedical applications of these nanoparticles.

Changes in Phytoavailability of Cadmium, Copper, Lead, and Zinc after Application with Eggshell in Contaminated Agricultural Soil

  • Kim, Rog-Young;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.1
    • /
    • pp.41-47
    • /
    • 2014
  • Agricultural soils surrounding mine areas in South Korea are often contaminated with multiple metals such as Cd, Pb and Zn. It poses potential risks to plants, soil organisms, groundwater, and eventually human health. The aim of this study was to examine the changes in phytoavailability of Cd, Cu, Pb and Zn after application with calcined eggshell (CES; 0, 1, 3, and 5% W/W) in an agricultural soil contaminated by mine tailings. The contents of Cd, Cu, Pb and Zn in soils were 8.79, 65.4, 1602, and $692mgkg^{-1}$ (aqua regia dissolution), respectively. The experiments were conducted with lettuce (Lactuca sativa L. var. longifolia) grown under greenhouse conditions during a 30-d period. $NH_4NO_3$ solution was used to examine the mobile fraction of these metals in soil. The application of CES dramatically increased soil pH and inorganic carbon content in soil due to CaO and $CaCO_3$ of CES. The increased soil pH decreased the mobile fraction of Cd, Pb, Zn: from 3.49 to < $0.01mgkg^{-1}$ for Cd, from 79.4 to $1.75mgkg^{-1}$ for Pb, and from 29.6 to $1.13mgkg^{-1}$ for Zn with increasing treatment of CES from 0 to 5%. In contrast, the mobile fraction of Cu was increased from 0.05 to $3.08mgkg^{-1}$, probably due to the formation of soluble $CuCO_3{^0}$ and Cu-organic complex. This changes in the mobile fraction resulted in a diminished uptake of Cd, Pb and Zn by lettuce and an increased uptake of Cu: from 4.19 to < $0.001mgkg^{-1}$ dry weight (DW) for Cd, from 0.78 to < $0.001mgkg^{-1}$ DW for Pb, and from 133 to $50.0mgkg^{-1}$ DW for Zn and conversely, from 3.79 up to $8.21kg^{-1}$ DW for Cu. The increased contents of Cu in lettuce shoots did not exceed the toxic level of $>25mgkg^{-1}$ DW. The mobile contents of these metals in soils showed a strong relationship with their contents in plant roots and shoots. These results showed that CES effectively reduced the phytoavailability of Cd, Pb, and Zn to lettuce but elevated that of Cu in consequence of the changed binding forms of Cd, Cu, Pb, and Zn in soils. Based on these conclusions, CES can be used as an effective immobilization agent for Cd, Pb and Zn in contaminated soils. However, the CES should be applied in restricted doses due to too high increased pH in soils.

Bioaccumulation Patterns and Responses of Fleece-flower; Persicaria thunbergii to Cadmium and Lead

  • Kim, In-Sung;Kyung Hong kang;Lee, Eun-Ju
    • 한국생태학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.119-125
    • /
    • 2002
  • Application of phytoremediation in the polluted area to remove undesirable materials is a complex and difficult subject without detailed investigation and experimentation. We investigated the accumulation patterns of cadmium and lead in plants naturally grown, the bioavailability of plants to accumulate these toxic metals and the responses of P. thunbergii to cadmium and lead. The soil samples contained detectable lead (<17.5$\mu\textrm{g}$/g), whereas cadmium was not detected in the soils of study area. The whole body of Persicaria thunbergii contained detectable lead (<320.8$\mu\textrm{g}$/g) but cadmium was detected only in the stem (<7.4$\mu\textrm{g}$/g) and root (<10.4$\mu\textrm{g}$/g) of P. thunbergii. Cadmium was not detected in Trapa japonica and Nymphoides peltata, whereas lead was detected in T. japonica (<323.7$\mu\textrm{g}$/g) and N. peltata (<177.5$\mu\textrm{g}$/g). Correlation coefficient between lead content in soil and in these plant samples represented positive correlation. The total content of lead in each plant sample increased in the order of N.peltata$\leq$P.thunbergii

  • PDF