• Title/Summary/Keyword: Toxic model

Search Result 338, Processing Time 0.034 seconds

Evaluation Methods and Design for Bioartificial Liver Based on Perfusion Model

  • Park Yueng Guen;Ryu Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • A bioartificial liver (BAL) is a medical device entrapping living hepatocytes or immortalized cells derived from hepatocytes. Many efforts have already been made to maintain the functions of the hepatocytes in a BAL device over a long term. However, there is still some uncertainty as to their efficacy. and their limitations are unclear. Therefore, it is important to quantitatively evaluate the metabolic functions of a BAL. In previous studies on in vitro BAL devices, two test methods, an initial bolus loading and constant-rate infusion plus initial bolus loading, were theoretically carried out to obtain physiologic data on drugs. However, in the current study, the same two methods were used as a perfusion model and derived the same clearance characterized by an interrelationship between the perfusate flow rate and intrinsic clearance. The interrelationship indicated that the CL increased with an increasing perfusate flow rate and approached its maximum value, i.e. intrinsic clearance. In addition, to set up an in vivo BAL system, the toxic plateau levels in the BAL system were calculated for both series and parallel circuit models. The series model had a lower plateau level than the parellel model. The difference in the toxic plateau levels between the parallel and series models increased with an increasing number of BAL cartridges.

A Mathematical Model Development for Microbial Arsenic Transformation and Transport

  • Lim, Mi-Sun;Yeo, In-Wook;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.318-322
    • /
    • 2004
  • Arsenic is a toxic and carcinogenic metalloid, whose sources in nature include mineral dissolution and volcanic eruption. Abandoned mines and hazardous waste disposal sites are another major source of arsenic contamination of soil and aquatic systems. To predict concentrations of the toxic inorganic arsenic in aqueous phase. the biogeochemical redox processes and transport behavior need to be studied together and be coupled in a reactive transport model. A new reaction module describing the fate and transport of inorganic arsenic species (As(II)), dissolved oxygen, nitrate, ferrous iron, sulfate, and dissolved organic carbon are developed and incorporated into the RT3D code.

  • PDF

Influence of sodium selenite on oxygen free radical in mercuric chloride induced renal failure (Mercuric chloride 유발 신부전에서 산소유리기에 미치는 Sodium selenite의 영향)

  • Kim, Hyoung-Chun;Jhoo, Wang-Kee;Huh, In-Hoi
    • YAKHAK HOEJI
    • /
    • v.32 no.4
    • /
    • pp.287-293
    • /
    • 1988
  • Oxygen free radical have recently been found to mediate cell injury after ischemia in the kidney. The purpose of our study was to determine whether selenium had an effect on damge mediated by oxygen free radical in inorganic mercury induced renal failure, toxic model of renal failure. Toxic renal failure model was produced by subcutaneous injection of mercuric chloride (4mg/kg) once a day for 7 consecutive days. In additionally, coadministration of sodium selenite (1mg/kg) was performed by the same condition. As a consequence of this study, we were able to detect partially unequivocal role of selenium as below dipicted. The combination of sodium selenite showed that markedly inhibited production of superoxide radical in mercuric chloride alone. On the other hand, combined sodium selenite was unable to enhance against significantly lowered superoxide dismutase activity after mercuric chloride insult. However, simultaneous administration of sodium selenite was inclined to induce mitochondrial superoxide dismutase and catalase.

  • PDF

3D-QSAR Study of Competitive Inhibitor for Acethylcholine Esterase (AChE) Nerve Agent Toxicity

  • San Juan, Amor A.;Cho, Seung-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.216-221
    • /
    • 2006
  • The cholinesterase-inhibiting organophosphorous (OP) compounds known as nerve agents are highly toxic. The principal toxic mechanism of OP compounds is the inhibition of acethylcholine esterase (AChE) by phosphorylation of its catalytic site. The reversible competitive inhibition of AChE may prevent the subsequent OP intoxication. In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR) was performed to investigate the relationship between the 29 compounds with structural diversity and their bioactivities against AChE. In particular, predictive models were constructed using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The results indicate reasonable model for CoMFA ($q^{2}=0.453,\;r^{2}=0.697$) and CoMSIA ($q^{2}=0.518,\;r^{2}=0.696$). The presence of steric and hydophobic group at naphtyl moiety of the model may lead to the design of improved competitive inhibitors for organophosphorous intoxication.

Water Quality Model for the Toxic Pollutant Transport Analysis in the Nakdong River (낙동강 유역에서의 독성오염물 배출에 따른 수질해석 모형의 개발)

  • 한건연;김광섭
    • Water for future
    • /
    • v.28 no.1
    • /
    • pp.57-70
    • /
    • 1995
  • A water quality model RIV-LAGI for the toxic pollutant transport analysis is developed based on varied flow analysis and one-dimensional Lagrangian method. Applying to the prismatic channel, it shows accurate results compared with the analytical solutions. The model is applied to the Nakdong River to analyze the phenol spill accident, which occurred on March, 1991. The computed results have good agreements with the observed data. The travel times in the reach of Gumi to Mulkeum based on the monthly average and minimum flow are computed. The suggested model can be used to study the impact of the chemical spills and clean-up plans in the Nakdong River.

  • PDF

Human Toxicity Index and Toxic Substances Emissions in Korea Industries (한국의 산업별 독성물질 배출과 인체유해도 측정 -산업연관분석의 응용-)

  • Rhee, Hae-Chun;Kim, Ik;Hur, Tak
    • Environmental and Resource Economics Review
    • /
    • v.15 no.4
    • /
    • pp.643-672
    • /
    • 2006
  • This study has assessed the industrial human toxicity index by means of toxic substances emissions in South Korean industry. The data used in analysis are the 146 kinds of the toxic chemicals emissions and final demands, total outputs in the input-output table. As a results, human carcinogenic index was $11.86198{\times}10^3$ for overall industries, and $0.26360{\times}10^3$ for average. The industries of higher human toxicity index can be ranked as follows: Mother vehicles and parts (7.85033) > Pig iron and crude steel(4.57409) > Primary iron and steel products(4.36668) > Other transportation equipments and parts(3.43293) > Inorganic basic chemical products(2.64379), etc. Such result can be considered as the priority order of regulation based on industrial characteristics, when the demand and industrial policies should be carried out for the deduction fof toxic substances.

  • PDF

Development of the pH Inhibition Model Adapting Pseudo Toxic Concentration (CPT) Concept for Activated Sludge Process (의사독성농도 (CPT) 개념을 도입한 활성슬러지 공정 pH 저해 모델 개발)

  • Ko, Joo-Hyung;Jang, Won-Ho;Im, Jeong-Hoon;Woo, Hae-Jin;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2037-2046
    • /
    • 2000
  • It has been reported that the inhibition effect of pH on activated sludge follows noncompetitive inhibition kinetics. However. the noncompetitive inhibition kinetic equation can not be directly applied to pH inhibition because of the difficulty in quantification of pH in terms of inhibitor concentration. So, many empirical equations have been developed to describe the pH inhibition effect especially for acidic condition. In this research. the pseudo toxic concentration ($C_{PT}$) concept model to quantify pH inhibition effect on activated sludge was proposed and compared to other existing models. The $C_{PT}$ concept model can explain the reduction of the maximum specific growth rate (${\mu}_{max}$) caused by the pH inhibition more accurately than any other models, at a wide range of pH. The only model parameter. $K_I$ can be easily estimated by Lineweaver-Burk linearization method.

  • PDF

Individual-Based Models Applied to Species Abundance Patterns in Benthic Macroinvertebrate Communities in Streams in Response to Pollution

  • Cho, Woon-Seok;Nguyen, Tuyen Van;Chon, Tae-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.420-443
    • /
    • 2012
  • An Individual-Based Model (IBM) was developed by employing natural and toxic survival rates of individuals to elucidate the community responses of benthic macroin-vertebrates to anthropogenic disturbance in the streams. Experimental models (dose-response and relative sensitivity) and mathematical models (power law and negative exponential distribution) were applied to determinate the individual survival rates due to acute toxicity in stressful conditions. A power law was additionally used to present the natural survival rate. Life events, covering movement, exposure to contaminants, death and reproduction, were simulated in the IBM at the individual level in small (1 m) and short (1 week) scales to produce species abundance distributions (SADs) at the community level in large (5 km) and long (1~2 years) scales. Consequently, the SADs, such as geometric series, log-series, and log-normal distribution, were accordingly observed at severely (Biological Monitoring Working Party (BMWP<10), intermediately (BMWP<40) and weakly (BMWP${\geq}50$) polluted sites. The results from a power law and negative exponential distribution were suitably fitted to the field data across the different levels of pollution, according to the Kolmogorov-Smirnov test. The IBMs incorporating natural and toxic survival rates in individuals were useful for presenting community responses to disturbances and could be utilized as an integrative tool to elucidate community establishment processes in benthic macroin-vertebrates in the streams.

A Study on the Nervous Toxic Mechanism of Cadmium (카드뮴의 신경독성 기전에 관한 연구)

  • 곽영규
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.3
    • /
    • pp.45-55
    • /
    • 1995
  • This study was carried out to elucidate the toxic mechanism of cadmium in peripheral nerve. An animal model of cadmium neuropathy was induced by feeding diet containing cadmium to Sprague- Dawley rat (or two weeks. Four weeks aged Sprague- Dawley rats were divided into four groups : normal control group, 10ppm- cadmium treated group, 100ppm- cadmium treated group, 1000ppm- cadmium treated group, reference drug- treated group. All rats were sacrificed at the end of two weeks for assessing the development of cadmium neuropathy, These results obtained were summarized as follows : 1. Cadmium reduced peripheral flow of both acetylcholinesterase and cholinesterase in rat sciatic nerve. 2. The toxic mechanism of cadmium might be the result of an reduction of myo-inositol concentration in peripheral nervous system 3. Reduction in myo-inositol content of peripheral nerve resulted from the inhibition of sodium- Potassium ATPase activity, which is responsible for myo-inositol transport, by cadmium 4. Oral administration of myo-inositol improved the flow of both acetylcholinesterase and cholinesterasenerve in cadmium intoxicated rat. These results suggest that mild cadmium neuropathy might be diagnosed by checking nervous myo-inositol content and oral administraion of myo-inositol might prevent the development of severe cadmium neuropathy with special reference to detective axonal transport.

  • PDF

Effects of Spatio-Temporal Resolution of Diagnostic Wind Field on the Dispersion of Released Substance (바람장의 공간적.시간적 해상도가 누출물질 확산에 미치는 영향)

  • 김영성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.327-338
    • /
    • 2000
  • complexity in atmospheric environment coupled with shoreline and complex terrain often causes local variations of meteorology that are distinct from those representative over larger surrounding area, These kinds of local variations are less significant in usual long-term environmental impact analyses dealing with continuous plume. The variations could however be crucial in predicting dispersion of toxic substance released in a relatively small area for a short duration. In the present paper the effects of spatial and temporal resolution of diagnostic wind field on the dispersion of the released substance are investigated by using a puff model. A hypothetical release scenario assumes that a substance is released from a location in the Yochon Industrial Estate and passively dispersed within a few-kilometer distance for an hour. The results show that diagnostic analysis could resolve more spatial variations to some extent by employing smaller grid size. The peak concentrations and puff trajectories obtained from spatially -and/or tmeporally -varing diagnostic wind field are found appreciably different from those obtained from uniform wind field. Attention to high-resolution wind field in the both spatial and temporal spaces is called in the consequence analysis of toxic substance release.

  • PDF