• 제목/요약/키워드: Toxic liquid

검색결과 202건 처리시간 0.023초

3D Terrain Model Application for Explosion Assessment

  • Kim, Hyung-Seok;Chang, Eun-Mi;Kim, In-Won
    • 한국지역지리학회:학술대회
    • /
    • 한국지역지리학회 2009년도 하계학술대회 발표집
    • /
    • pp.108-115
    • /
    • 2009
  • An increase in oil and gas plants caused by development of process industry have brought into the increase in use of flammable and toxic materials in the complex process under high temperature and pressure. There is always possibility of fire and explosion of dangerous chemicals, which exist as raw materials, intermediates, and finished goods whether used or stored in the industrial plants. Since there is the need of efforts on disaster damage reduction or mitigation process, we have been conducting a research to relate explosion model on the background of real 3D terrain model. By predicting the extent of damage caused by recent disasters, we will be able to improve efficiency of recovery and, sure, to take preventive measure and emergency counterplan in response to unprepared disaster. For disaster damage prediction, it is general to conduct quantitative risk assessment, using engineering model for environmentaldescription of the target area. There are different engineering models, according to type of disaster, to be used for industry disaster such as UVCE (Unconfined Vapor Cloud Explosion), BLEVE (Boiling Liquid Evaporation Vapor Explosion), Fireball and so on, among them.we estimate explosion damage through UVCE model which is used in the event of explosion of high frequency and severe damage. When flammable gas in a tank is released to the air, firing it brings about explosion, then we can assess the effect of explosion. As 3D terrain information data is utilized to predict and estimate the extent of damage for each human and material. 3D terrain data with synthetic environment (SEDRIS) gives us more accurate damage prediction for industrial disaster and this research will show appropriate prediction results.

  • PDF

Identification of Stenotrophomonas maltophilia LK-24 and its Degradability of Crystal Violet

  • Kim, Jeong-Dong;Yoon, Jung-Hoon;Park, Yong-Ha;Fusako Kawai;Kim, Hyun-Tae;Lee, Dae-Weon;Kang, Kook-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권3호
    • /
    • pp.437-443
    • /
    • 2002
  • A number of soil and wastewater samples were collected from the vicinity of an effluent treatment plant for the chemical industry. Several microorganisms were screened fur their ability to decolorize the triphenylmethane group of dyes. As a result, a novel crystal violet dye-degrading strain LK-24 was isolated. Taxonomic identification including 16S rDNA sequencing and phylogenetic analysis indicated that the isolate had a $99.5\%$ homology in its 16S rDNA base sequence with Stenotrophomonas maltophilia. The triphenylmethane dye, crystal violet, was degraded extensively by growing cells of Stenotrophomonas maltophilia LK-24 in agitated liquid cultures, although their growth was strongly inhibited in the initial stage of incubation. This group of dyes is toxic, depending on the concentration used. The dye was significantly degraded at a relatively lower concentration, below $100{\mu}g\;ml^-1$, yet the growth of the cells was totally suppressed at a dye concentration of $250{\mu}g\;ml^-1$. The degradation products of crystal violet were identified as 4,4'-bis(dimethylamino)-benzophenone and ${\rho}$-dimethylaminophenol by Gas chromatography-Mass spectrometry. The 4,4'-bis(dimethylamino)-benzophenone was easily obtained in a reasonable yield, as it was not metabolized further by S. maltophilia LK-24; however, the ${\rho}$-dimethylaminophenol was not easily identifiable, as it was further metabolized.

경안천 유역 오염토양에서 분리한 방선균의 염화 페놀계 화합물 분해 (Degradation of Chlorinated Phenolic Compounds by Soil Actinomycetes Isolated from the Contami-nated Soil Nearby the Kyung-An River)

  • 김성민;김창영;김응수
    • 한국미생물·생명공학회지
    • /
    • 제30권3호
    • /
    • pp.287-292
    • /
    • 2002
  • 본 연구에서는 경안천 유역에 있는 주유소 오염토양으로부터 대표적인 아조계 염료 congo-red분해능이 우수한 토양 방선균, SMA-2를 분리 선별하고, SMA-2의 배양조건을 최적화하여 2,4-dichlorophenol의 산화에 관여하는 actinomycetes lignin peroxidase(ALiP)의 활성도에 대한 특성을 규명하였다. 기존에 보고된 방선균 유래 ALiP와는 달리, SMA-2유래 ALiP효소는 pH6에서 최고의 활성을 보였으며, 2,4-DCP와 $H_2$$O_2$에 대한 Km값이 각각 0.21mM과 8.5mM로 측정되었다. 또한 최적화된 배지에서 성장한 SMA-2의 배양액은 2,4-dichlorophenol 뿐만 아니라 2-chlorophenol, 2,4,6-trichlorophenol, 2,6-dichlorophenol, phenol, 4-chloropheno떼 대해서도 산화능을 보임으로써, 토양 방선균을 이용한 염화 페놀계 화합물이 포함된 오염 토양의 생복원 가능성을 제시하였다.

마비성패류독소 분석을 위한 Precolumn HPLC Oxidation 법의 유효성 검증 (Validation of Precolumn HPLC Oxidation Method for Analysis of Paralytic Shellfish Poison)

  • 목종수;송기철;이가정;김지회
    • 한국수산과학회지
    • /
    • 제46권2호
    • /
    • pp.147-153
    • /
    • 2013
  • To prevent paralytic shellfish poisoning (PSP) due to the consumption of shellfish contaminated with PSP toxins, the quantitative analysis of these toxins is very crucial. The AOAC International mouse bioassay (MBA) has been used widely for the routine monitoring of PSP toxins for more than 50 years. However, this method has low sensitivity and high limit of quantification (LOQ) and interferences from other components in the extract, and it cannot determine toxic profiles. Ethical problems also exist with the continued use of this live mouse assay. To establish an alternative method to the MBA used for PSP toxins analysis, we attempted to optimize the analysis conditions of a precolumn high-performance liquid chromatography (HPLC) oxidation method and succeeded in validating its accuracy and precision in quantifying PSP toxins. A clear peak and the isolation of PSP toxins were obtained by injecting the working standards of Certified Reference Materials using HPLC. The LOQ of the precolumn HPLC oxidation method for PSP toxins was about $0.1002{\mu}g/g$, which represented an approximately fourfold improvement in detection capability versus the AOAC MBA. The intra-accuracy and precision for PSP toxins in oysters were 77.0-103.3% and 2.0-5.7%, respectively, while the respective inter-accuracy and precision were 77.3-100.7% and 2.4-6.0%. The mean recoveries of PSP toxins from oysters were 75.2-112.1%. The results of a comparison study showed good correlation between the results of the precolumn HPLC oxidation method and those of MBA, with a correlation factor of 0.9291 for mussels. The precolumn HPLC oxidation method may be used as an alternative to, or supplementary method with, MBA to monitor the occurrence of PSP toxins and to analyze the profiles of these toxins in shellfish.

Adverse Effects on Crops and Soils Following an Accidental Release of Hydrogen Fluoride and Hydrofluoric Acid

  • Kang, Dae-Won;Kim, Hyuck-Soo;Kunhikrishnan, Anitha;Kim, Da-In;Lee, Seul;Park, Sang-Won;Yoo, Ji-Hyock;Kim, Won-Il
    • 한국토양비료학회지
    • /
    • 제49권6호
    • /
    • pp.651-654
    • /
    • 2016
  • A number of accidents relating to highly toxic hydrogen fluoride (HF) or hydrofluoric acid (HA) release have occurred over fast few decades in Korea. Thus, this study was conducted to investigate the fluoride (F) concentrations in paddy soil and brown rice from 2 different areas where the soils were exposed to HF and HA. In the first case, the HF leakage accident that occurred in 2012 affected the surrounding soils and crops and consequently, crops (rice) affected by HF were unavailable for forage even though F did not accumulate in the soil. For example, at the time of accident, F concentrations in brown rice samples were $33.0-1,395mg\;kg^{-1}$, while F concentrations in soil samples were $155-295mg\;kg^{-1}$ which were less than the Korean standard guideline values of $400mg\;kg^{-1}$. However, after a year, F concentrations in brown rice were observed below the detection limit ($1mg\;kg^{-1}$), although F concentrations in soils were similar with those in 2012. Also, large amounts of wastewater discharges containing HA occurred in 2013 and some agricultural soils exceeded the Korean standard guideline values for F ($400mg\;kg^{-1}$), but soil-plant F transfer was not observed. In conclusion, it was observed that soil to plant transfer of F is unlikely although HF and HA as gas or liquid form can cause direct damage to plants.

Characterization of Forest Fire Emissions and Their Possible Toxicological Impacts on Human Health

  • Kibet, Joshua;Bosire, Josephate;Kinyanjui, Thomas;Lang'at, Moses;Rono, Nicholas
    • Journal of Forest and Environmental Science
    • /
    • 제33권2호
    • /
    • pp.113-121
    • /
    • 2017
  • In flight particulate matter particularly emissions generated by incomplete combustion processes has become a subject of global concern due to the health problems and environmental impacts associated with them. This has compelled most countries to set standards for coarse and fine particles due to their conspicuous impacts on environment and public health. This contribution therefore explores forest fire emissions and how its particulates affects air quality, damage to vegetation, water bodies and biological functions as architects for lung diseases and other degenerative illnesses such as oxidative stress and aging. Soot was collected from simulated forest fire using a clean glass surface and carefully transferred into amber vials for analysis. Volatile components of soot were collected over 10 mL dichloromethane and analyzed using a QTOF Premier-Water Corp Liquid Chromatography hyphenated to a mass selective detector (MSD), and Gas Chromatograph coupled to a mass spectrometer (GC-MS). To characterize the size and surface morphology of soot, a scanning electron microscope (SEM) was used. The characterization of molecular volatiles from simulated forest fire emissions revealed long chain compounds including octadec-9-enoic acid, octadec-6-enoic acid, cyclotetracosane, cyclotetradecane, and a few aromatic hydrocarbons (benzene and naphthalene). Special classes of organics (dibenzo-p-dioxin and 2H-benzopyran) were also detected as minor products. Dibenzo-p-dioxin for instance in chlorinated form is one of the deadliest environmental organic toxins. The average particulate size of emissions using SEM was found to be $11.51{\pm}4.91{\mu}m$. This study has shown that most of the emissions from simulated forest fire fall within $PM_{10}$ particulate size. The molecular by-products of forest fire and particulate emissions may be toxic to both human and natural ecosystems, and are possible precursors for various respiratory ailments and cancers. The burning of a forest by natural disasters or man-made fires results in the destruction of natural habitats and serious air pollution.

제올라이트와 Klebsiella pneumonia sp.을 이용한 화학-생물학적 액상 암모니아의 제거 효율 연구 (Investigation of Liquid Phase Ammonia Removal Efficiency by Chemo-biological Process of Zeolites and Klebsiella pneumonia sp.)

  • 박민섭;최권영
    • 공업화학
    • /
    • 제28권6호
    • /
    • pp.685-690
    • /
    • 2017
  • 암모니아는 현대 산업에서 빠질 수 없는 유용한 물질이다. 일반적으로 농업용 폐기물의 분해과정을 통해 배출되며 인체에 매우 해로운 독극물로 알려져 있다. 산업에서 흔하게 쓰이는 물질이기에 직접 누출이나 간접 누출로 인한 수질오염의 가능성이 있다. 이 경우 암모늄이온을 빠르게 제거하는 데는 제올라이트의 흡착능을 이용하는 것이 좋지만 흡착만으로는 충분히 제거할 수 없다. 본 논문에서는 상용 제올라이트의 흡착능을 통한 암모늄이온의 제거 효율과 미생물의 생물학적 메커니즘을 통한 제거효율을 비교하였다. 추가적으로 제올라이트에 미생물을 고정하여 화학적 흡착 및 생물학적 전환 기술을 병합하여 그 효율을 비교하였다. 그 결과 100 ppm 기준 상용 제올라이트의 경우 2-4 h 사이에 67-81%의 제거효율을 보이는데 반해 선정 미생물인 Klebsiella pneumoniae subsp. Pneumoniae를 이용한 경우 8 h 내에 최대 97%의 제거 효율을 나타냈었다. 그리고 미생물을 제올라이트에 고정시켰을 때 8 h 이내에 98.5%로 제거 효율 및 속도가 증가하는 것을 확인할 수 있었다.

Toxicity Screening of Single Dose of Inorganic and Organic Arsenics on Hematological and Serum Biochemical Parameters in Male Cynomolgus Monkeys

  • Kim, Choong-Yong;Han, Kang-Hyun;Heo, Jeong-Doo;Han, Eui-Sik;Yum, Young-Na;Lee, Jin-Young;Park, Kyung-Su;Im, Ruth;Choi, Seong-Jin;Park, Jung-Duck
    • Toxicological Research
    • /
    • 제24권3호
    • /
    • pp.219-225
    • /
    • 2008
  • A screening study of the acute toxicity of organic arsenics such as arsenobetaine and arsenocholine, a product of arsenic methylation metabolite, and inorganic arsenic was carried out to examine hematological and serum biochemical parameters in cynomolgus monkeys(Macaca fascicularis). We found soft and liquid feces, and vomiting in all treated groups with inorganic and organic arsenics. The monkeys in inorganic arsenic-treated group showed a significant increase in vomiting frequency compared with those in three organic arsenics-treated groups. These results suggest that inorganic arsenic might be more toxic than three other organic arsenics tested. The monkeys in inorganic arsenic-treated group showed a decrease in platelet and an increase in monocyte on day 4 and the monkeys in arsenocholine-treated group showed an increase in reticulocyte percentage on day 8. The monkeys in inorganic-treated group also showed decreases in AST and ALT values and the monkeys in arsenobetaine-treated group showed a decrease in AST value and an increase in T-CHO value. However, these hematological and biochemical changes were within the physiological ranges, showing that the single dose of inorganic and organic arsenics did not affect at least hematological and serum biochemical parameters. The present study of toxicity with single dose of arsenics provides valuable indicators for longer term study of toxicity of repeated doses of arsenics in primates.

APPLICATION OF 3D TERRAIN MODEL FOR INDUSTRY DISASTER ASSESSMENT

  • Kim, Hyung-Seok;Cho, Hyoung-Ki;Chang, Eun-Mi;Kim, In-Hyun;Kim, In-Won
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.3-5
    • /
    • 2008
  • An increase in oil and gas plants caused by development of process industry have brought into the increase in use of flammable and toxic materials in the complex process under high temperature and pressure. There is always possibility of fire and explosion of dangerous chemicals, which exist as raw materials, intermediates, and finished goods whether used or stored in the industrial plants. Since there is the need of efforts on disaster damage reduction or mitigation process, we have been conducting a research to relate explosion model on the background of real 3D terrain model. By predicting the extent of damage caused by recent disasters, we will be able to improve efficiency of recovery and, sure, to take preventive measure and emergency counterplan in response to unprepared disaster. For disaster damage prediction, it is general to conduct quantitative risk assessment, using engineering model for environmental description of the target area. There are different engineering models, according to type of disaster, to be used for industry disaster such as UVCE (Unconfined Vapour Cloud Explosion), BLEVE (Boiling Liquid Evaporation Vapour Explosion), Fireball and so on, among them, we estimate explosion damage through UVCE model which is used in the event of explosion of high frequency and severe damage. When flammable gas in a tank is released to the air, firing it brings about explosion, then we can assess the effect of explosion. As 3D terrain information data is utilized to predict and estimate the extent of damage for each human and material. 3D terrain data with synthetic environment (SEDRIS) gives us more accurate damage prediction for industrial disaster and this research will show appropriate prediction results.

  • PDF

Ecotoxicological Risk Assessment for Acetaminophen in Kyongahn River

  • Kim, Pan-Gyi
    • 한국환경보건학회지
    • /
    • 제32권5호
    • /
    • pp.440-445
    • /
    • 2006
  • 통증경감을 위하여 광범위하게 사용되는 acetoaminophen은 치통, 두통에 주로 사용되는 의약물질이다. 의약품의 환경오염과 관련하여 수자원에 유입되는 acetaminophen의 경안천 오염정도를 파악하고 생태 위해성을 평가하기 위하여 본 연구를 수행하였다. 한강 수계이며 용인시와 광주시를 거쳐 팔당호로 흘러 들어가는 경안천(해실교, 수포교, 왕산교, 경안교, 지월교, 광동교, 팔당호)내 acetaminophen 잔류 농도와 분포를 조사하였다. 또한 Daphnia magna를 대상으로 48시간 급성독성평가를 실시하여 위해도를 평가하였다. 잔류의약품 검출을 위해 SPE 추출법을 선택 하였으며, liquid chromatography/mass spectrometry (LC/MS)를 이용하여 분석하였다. 경안천 내에서 acetaminophen 0.439 mg/l이 검출되었다. 독성평가를 실시한 결과, 48시간 $LC_{50}$은 16.9 mg/l로 나타났다. 경안천의 acetamionophen 농도와 독성평가를 바탕으로 위해성 평가를 실시한 결과 위해성은 1 이하였다 하지만 국내에 의약품 발달과 함께 사용이 계속적으로 늘어나는 추세이고, 잔류의약품에 대한 대책이 마련되어있지 않은 이상 수환경은 의약품에 노출될 것이다. 그러므로 잔류의약품이 생태계에 악영향을 미치지 않도록 구체적인 방안이 강구되어야 할 것으로 사료된다.