• 제목/요약/키워드: Toxic brain edema

검색결과 4건 처리시간 0.016초

Role of Diffusion-weighted MR Imaging in Children with Various Brain Pathologies

  • 최성훈;구현우;고태성;나영신;강신광;김태형
    • 대한자기공명의과학회:학술대회논문집
    • /
    • 대한자기공명의과학회 2003년도 제8차 학술대회 초록집
    • /
    • pp.99-99
    • /
    • 2003
  • To exhibit our clinical experience of diffusion-weighted (DW) MR imaging for various brain pathologies and to determine its role in characterizing brain pathologies in children. DW images in 177 children (M:F=96:81, mean age, 4.7 years) with various brain pathologies were retrospectively collected over past 3 years. DW images (b value: 1000 s/mm) were reviewed along with corresponding apparent diffusion coefficient (ADC) maps. Brain pathologies included cystic or solid brain tumor (n = 55), cerebral infarct (n = 32), cerebritis with or without brain abscess (n = 21), metabolic or toxic brain disorder (n = 19), demyelinating disease (n = 16), hypoxic-ischemic encephalopathy (n = 16), intracerebral hemorrhage including traumatic brain lesion (n = 15), and posterior reversible leukoencephalopathy (n = 3). We reviewed whether DW images and ADCmaps contribute to further characterization of brain pathologies by defining a chronological age of lesions, the presence of cytotoxic edema in lesions, and the nature of cystic lesions.

  • PDF

Phenytoin Induced Erythema Multiforme after Cranial Radiation Therapy

  • Kazanci, Atilla;Tekkok, Ismail Hakki
    • Journal of Korean Neurosurgical Society
    • /
    • 제58권2호
    • /
    • pp.163-166
    • /
    • 2015
  • The prophylactic use of phenytoin during and after brain surgery and cranial irradiation is a common measure in brain tumor therapy. Phenytoin has been associated with variety of adverse skin reactions including urticaria, erythroderma, erythema multiforme (EM), Stevens-Johnson syndrome, and toxic epidermal necrolysis. EM associated with phenytoin and cranial radiation therapy (EMPACT) is a rare specific entity among patients with brain tumors receiving radiation therapy while on prophylactic anti-convulsive therapy. Herein we report a 41-year-old female patient with left temporal glial tumor who underwent surgery and then received whole brain radiation therapy and chemotherapy. After 24 days of continous prophylactic phenytoin therapy the patient developed minor skin reactions and 2 days later the patient returned with generalized erythamatous and itchy maculopapuler rash involving neck, chest, face, trunk, extremities. There was significant periorbital and perioral edema. Painful mucosal lesions consisting of oral and platal erosions also occurred and prevented oral intake significantly. Phenytoin was discontinued gradually. Systemic admistration of corticosteroids combined with topical usage of steroids for oral lesions resulted in complete resolution of eruptions in 3 weeks. All cutaneous lesions in patients with phenytoin usage with the radiotherapy must be evoluated with suspicion for EM.

가미시호탕이 뇌허혈시 Glutamate receptor, free radical 및 뇌손상 보호에 미치는 영향 (Study on the Effect of Gamisihotang(GSHT) on Glutamate Receptor, Free Radical and Brain Damage in Rats Subjected to Brain Ischemia)

  • 오병열;김민상;유병찬;최영;설인찬
    • 대한한의학회지
    • /
    • 제25권3호
    • /
    • pp.32-44
    • /
    • 2004
  • Objectives : This study was undertaken to prove the effect of GSHT on the glutamate receptor, free radical and brain damage in rats subjected to brain ischemia Methods : Levels of cultured cortical neuron death caused by toxic chemicals were measured by LDH release assay. Neuroprotective effects of GSHT on brain tissues were examined in vivo by ischemic model of middle cerebral artery (MCA) occlusion. Results : GSHT showed significant inhibitory effect on LDH release induced by NMDA-kinate-Fe/sup 2+/. GSHT remarkably decreased coma duration time in a nonfatal dose of KCN and showed higher survival rate in a fatal dose. GSHT remarkably decreased ischemic area and edema induced by the MCA blood flow block. GSHT showed high improvement of forelimb and hind limb test after MCA occlusion in neurological examination. GSHT showed no significant change after MCA occlusion in pathological observation of the normal group. Conclusions : These results indicate that GSHT can be used to treat the brain damage caused by brain ischemia. Further study will be needed about the functional mechanism, etc.

  • PDF

가미치첨탕이 고혈압 및 뇌손상에 미치는 효과 (Protective Effects of Gamiheechum-tang(Jiaweixiqian-tang) on Hypertension and Brain Damage)

  • 유종삼;김동희;박종오;남궁욱;홍석
    • 대한한의학회지
    • /
    • 제24권3호
    • /
    • pp.72-83
    • /
    • 2003
  • Objective : The goal of the present study was to investigate the protective effect of Gamiheechum-tang (Jiaweixiqian-tang; GHCT) on brain tissue damage from chemical or ischemic insults. Methods : Levels of cultured cortical neuron death caused by toxic chemicals were measured by LDH release assay. Neuroprotective effects of GHCT on brain tissues were examined in vivo by ischemic model of middle cerebral artery (MCA) occlusion. Results : Animal groups treated with GBCT showed significantly decreased hypertension, and reduced levels of aldosterone, dopamine, and epinephrine in the plasma. GHCT treatments ($l0-200\mu\textrm{g}/ml$) significantly decreased cultured cortical neuron death mediated by AMPA, kainate, BSO, or Fe2+ when measured by LDH release assay. Yet, cell death mediated by NMDA was effectively protected by GHCT at the highest concentration examined ($200\mu\textrm{g}/ml$). In the in vivo experiment examining brain damage by MCA occlusion, affected brain areas by ischemic damage and edema were significantly less in animal groups administered with GHCT compared to the non-treated control group. Neurological examinations of forelimbs and hindlimbs showed that GHCT treatment improved animals' recovery from ischemic injury. Moreover, the extent of injury in cortical and hippocampal pyramidal neurons in ischemic rats was much reduced by GHCT, whose morphological features were similarly observed in non-ischemic animals. Conclusion : The present data suggest that GBCT may play an important role in protecting brain tissues from chemical or ischemic injuries.

  • PDF