• Title/Summary/Keyword: Toxic Gas

Search Result 496, Processing Time 0.029 seconds

Optimization of ZnO-based transparent conducting oxides for thin-film solar cells based on the correlations of structural, electrical, and optical properties (ZnO 박막의 구조적, 전기적, 광학적 특성간의 상관관계를 고려한 박막태양전지용 투명전극 최적화 연구)

  • Oh, Joon-Ho;Kim, Kyoung-Kook;Song, Jun-Hyuk;Seong, Tae-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.42.2-42.2
    • /
    • 2010
  • Transparent conducting oxides (TCOs) are of significant importance for their applications in various devices, such as light-emitting diodes, thin-film solar cells, organic light-emitting diodes, liquid crystal displays, and so on. In order for TCOs to contribute to the performance improvement of these devices, TCOs should have high transmittance and good electrical properties simultaneously. Sn-doped $In_2O_3$ (ITO) is the most commonly used TCO. However, indium is toxic and scarce in nature. Thus, ZnO has attracted a lot of attention because of the possibility for replacing ITO. In particular, group III impurity-doped ZnO showed the optoelectronic properties comparable to those of ITO electrodes. Al-doped ZnO exhibited the best performance among various doped ZnO films because of the high substitutional doping efficiency. However, in order for the Al-doped ZnO to replace ITO in electronic devices, their electrical and optical properties should further significantly be improved. In this connection, different ways such as a variation of deposition conditions, different deposition techniques, and post-deposition annealing processes have been investigated so far. Among the deposition methods, RF magnetron sputtering has been extensively used because of the easiness in controlling deposition parameters and its fast deposition rate. In addition, when combined with post-deposition annealing in a reducing ambient, the optoelectronic properties of Al-doped ZnO films were found to be further improved. In this presentation, we deposited Al-doped ZnO (ZnO:$Al_2O_3$ = 98:2 wt%) thin films on the glass and sapphire substrates using RF magnetron sputtering as a function of substrate temperature. In addition, the ZnO samples were annealed in different conditions, e.g., rapid thermal annealing (RTA) at $900^{\circ}C$ in $N_2$ ambient for 1 min, tube-furnace annealing at $500^{\circ}C$ in $N_2:H_2$=9:1 gas flow for 1 hour, or RTA combined with tube-furnace annealing. It is found that the mobilities and carrier concentrations of the samples are dependent on growth temperature followed by one of three subsequent post-deposition annealing conditions.

  • PDF

The Research for effect of lubricant oil aging on environmental performance (자동차 윤활유의 성상 및 열화가 환경성에 미치는 영향 연구)

  • Kim, Jeong-Hwan;Kim, Ki-Ho;Ha, Jong-Han;Jin, Dong-Young;Myung, Cha-Lee;Jang, Jin-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.12-24
    • /
    • 2017
  • The main purpose of this research is for the investigation on the impact of engine oil aging on PM and DPF. It is widely known that lubricant specifications and consumption from an ICE have significantly influenced on the regulated and unregulated harmful emissions as the engine operating conditions. Considering DPF clogging phenomena with lubricant-derived soot/ash components, simulated aging mode for the DPF was newly designed for engine dynamometer testing. PM/ash accumulation cycle were developed in reflecting real-world engine operating conditions for the increment of engine oil consumption and natural DPF regeneration for the ash accumulation. The test duration for DPF aging reached around 100hrs with high- and low-SAPS engine oils, respectively. Using high SAPs engine oil made more PM/ash accumulation compared with low SAPs engine oils and it could accelerate fouling of EGR in engine. Fouling of EGR made effects on more harmful exhaust gases emissions. The test results on engine lubricant under engines operating conditions will deliver for the establishment of regulated and unregulated toxic emissions policy, lubricant quality standard.

Exposure Assessment of PCDD/Fs and Monitoring of Health Effects on Workers and Resident near the Waste Incinerators in Korea (국내 일부 소각장 근로자와 주변지역주민들의 PCDDs/Fs 노출과 건강 영향 평가)

  • Hong, Yun-Chul;Lee, Kwan-Hee;Kwon, Ho-Jang;Jang, Jae-Yeon;Leem, Jong-Han
    • Journal of Preventive Medicine and Public Health
    • /
    • v.36 no.4
    • /
    • pp.314-322
    • /
    • 2003
  • Objectives : In this study, the exposure status of the hazardous substances from incinerators, such as polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), were studied , and the relationship between the exposure of these hazardous substances and their heath effects on the workers and residents near municipal solid waste (MSW) incinerators and an industrial incinerator investigated. Methods : Between July 2001 and Jure 2002, 13 workers at two MSW incinerators, 16 residents from the area around the two MSW incinerators, 6 residents from the control area, and further 10 residents near an industrial incinerator, estimated to emit higher levels of hazardous substances, were interviewed. Information, including sociodemographic information, personal habits, and work history, detailed gynecologic and other medical history were collected through interviews. Blood samples were also collected from 45 subjects, and analyzed for PCDD/DFs, by high resolution gas chromatography -high resolution mass spectrometry, using the US EPA 1613 method. In addition to the questionnaire survey, urinary concentrations of 8-hydroxydeoxyguanosine (8-OH-dG) and malondialdehyde (MDA) were measured as oxidative injury biomarkers. The urinary concentrations of 8-OH-dG were determined by in vitro ELISA, and the MDA by HPLC, using u adduct with thiobarbituric acid. Results : The PCDD/DFs concentrations in the residents near the industrial incinerator were higher than those in the controls, workers and residents near the MSW incinerators. The average TEQ (Toxic Equivalencies) concentrations of the PCDD/DFs in residents near the industrial incinerator were 53.4pg I-TEQs/g lipid. The estimated daily intakes were within the tolerable daily intake range (1-4 pg I-TEQ/Kg bw/day) suggested by WHO (1997) in only 30% to the people near the industrial incinerator. Animal studies have already shown that even a low body border of PCDD/DFs, such as 10 ng TEQ/kg bw, can cause oxidative damage in laboratory animals. Our study also showed that the same body burden of PCDD/DFs can cause oxidative damage to humans. Conclusions : The exposures to PCDD/DFs and the oxidative stress of residents near the industrial incinerator, were higher than those in the controls, workers and residents near the MSW incinerators. Proper protection strategies against these hazardous chemicals are needed. Because a lower body burden of PCDD/Fs, such as 10ng TEQ/kg bw, can cause oxidative damage, the tolerable daily intake range should be restrictedly limited to 1pg I-TEQ/kg bw/day.

Biodegradation of Polynuclear Aromatic Hydrocarbons in soil using microorganisms under anaerobic conditions (혐기성 미생물에 의한 토양내 다핵성방향족화합물의 생물학적 분해)

  • An, Ik-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.89-91
    • /
    • 2000
  • Polynuclear aromatic hydrocarbon (PAH) compounds are highly carcinogenic chemicals and common groundwater contaminants that are observed to persist in soils. The adherence and slow release of PAHs in soil is an obstacle to remediation and complicates the assessment of cleanup standards and risks. Biological degradation of PAHs in soil has been an area of active research because biological treatment may be less costly than conventional pumping technologies or excavation and thermal treatment. Biological degradation also offers the advantage to transform PAHs into non-toxic products such as biomass and carbon dioxide. Ample evidence exists for aerobic biodegradation of PAHs and many bacteria capable of degrading PAHs have been isolated and characterized. However, the microbial degradation of PAHs in sediments is impaired due to the anaerobic conditions that result from the typically high oxygen demand of the organic material present in the soil, the low solubility of oxygen in water, and the slow mass transfer of oxygen from overlying water to the soil environment. For these reasons, anaerobic microbial degradation technologies could help alleviate sediment PAH contamination and offer significant advantages for cost-efficient in-situ treatment. But very little is known about the potential for anaerobic degradation of PAHs in field soils. The objectives of this research were to assess: (1) the potential for biodegradation of PAH in field aged soils under denitrification conditions, (2) to assess the potential for biodegradation of naphthalene in soil microcosms under denitrifying conditions, and (3) to assess for the existence of microorganisms in field sediments capable of degrading naphthalene via denitrification. Two kinds of soils were used in this research: Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS). Results presented in this seminar indicate possible degradation of PAHs in soil under denitrifying conditions. During the two months of anaerobic degradation, total PAH removal was modest probably due to both the low availability of the PAHs and competition with other more easily degradable sources of carbon in the sediments. For both Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS), PAH reduction was confined to 3- and 4-ring PAHs. Comparing PAH reductions during two months of aerobic and anaerobic biotreatment of MHS, it was found that extent of PAHreduction for anaerobic treatment was compatible with that for aerobic treatment. Interestingly, removal of PAHs from sediment particle classes (by size and density) followed similar trends for aerobic and anaerobic treatment of MHS. The majority of the PAHs removed during biotreatment came from the clay/silt fraction. In an earlier study it was shown that PAHs associated with the clay/silt fraction in MHS were more available than PAHs associated with coal-derived fraction. Therefore, although total PAH reductions were small, the removal of PAHs from the more easily available sediment fraction (clay/silt) may result in a significant environmental benefit owing to a reduction in total PAH bioavailability. By using naphthalene as a model PAH compound, biodegradation of naphthalene under denitrifying condition was assessed in microcosms containing MHS. Naphthalene spiked into MHS was degraded below detection limit within 20 days with the accompanying reduction of nitrate. With repeated addition of naphthalene and nitrate, naphthalene degradation under nitrate reducing conditions was stable over one month. Nitrite, one of the intermediates of denitrification was detected during the incubation. Also the denitrification activity of the enrichment culture from MHS slurries was verified by monitoring the production of nitrogen gas in solid fluorescence denitrification medium. Microorganisms capable of degrading naphthalene via denitrification were isolated from this enrichment culture.

  • PDF

Experimental Study on the Effect of Hyperbaric Oxygen Therapy on the Ischemic Wound Healing of Rats. (고압산소요법이 백서 구강내외 허혈성 연조직 창상치유에 미치는 영향에 관한 실험적 연구)

  • Park, Chang-Joon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.11 no.1
    • /
    • pp.153-170
    • /
    • 1989
  • Recently, frequently using hyperbaric oxygen therapy is known for its effectiveness on the healing of problem wounds such as osteomyelitis, osteoradionecrosis and gas gangrenous wound etc. The main objectives of this study was to determine the best protocol of its application of hyperbaric oxygen therapy. Author used 238 rats (Sprague-Dawley strain) deviding into 2 Groups, experimental I group for skin and experimental II group for palatal mucosal ischemic wounds, and observed its effects by microscopically. The obtained results summarized as follows; 1. Severe infiltration of inflammatory cells was observed in initial stages of both control and experimental I group. The infiltration showed decreasing tendency at 5th day of experimental D, E, F group while at 8th day in control group In d, f of experimental II group showed decreasing tendency at 8th experimental day while at 12th day in control group. 2. Macrophages appeared at 2nd day in D of experimental I group while at 6th day in control group. In d, f of experimental II group appeared at 6th day while at 10th day in control group. 3. As to the proliferation of capillary blood vessels showed at 3-4 day in most of experimental I group severely while at 8th day in control group. In experimental II group, it was at 8th day and 12th day respectively. 4. The proliferation of fibroblasts showed rather rapider in experimental I group, at 4-6th day, while at 8th day in control group. In experimental II group, it was at 8th day and 12th day respectively. 5. As to the collagen formations, it was at 4th day in experimental I group while at 8th day in control group. In experimental II group, it was at 6th day and 10th day respectively. 6. 5 rats (2.0 %) in E group and 8 rats (3.4 %) in f group showed oxygen toxic reaction, such as unstable attitude and tremor, during the experiments. This hyperbaric oxygen animal experiments disclosed excellent effects on the ischemic wound healing and it is thought to be the best protocol of its application was on D group (2.5 ATM. and 2 hrs, exposure).

  • PDF

Resistance Function of Woody Landscape Plants to Air Pollutants(II) - POD Activity - (조경수목(造景樹木)의 대기오염물질(大氣汚染物質)에 대한 방어기능(防禦機能)(II) - POD 활성(活性)을 중심으로 -)

  • Kim, Myung Hee;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.3
    • /
    • pp.234-246
    • /
    • 1992
  • This study was conducted to determine the toxic effects of air pollutants on landscaping tress, Pinus densiflora, Pinus koraiensis, Ginkgo biloba, Liriodendron tulipifera, Platanus occidentalis and their resistance to the pollutant toxicity in urban and industrial regions of Seoul and Taejon, Korea. Total sulfur contents and enzyme activities such as superoxide dismutase and peroxidase were analyzed in tree foliage of Pinus densiflora, Pinus koraiensis, Ginkgo biloba, Liriodendron tulipifera, Platanus occidentalis. In addition, POD activity was analyzed in the foliage on tree seedlings, i.e. Pinus densiflora, Pinus koraiensis, Ginkgo biloba, Lirioderdron tulipifera, with the fumigation of $SO_2$ in gas chamber 4 hours a day for six days. In Ginkgo biloba total sulfur content and POD activity had a negative correlation while other species had a positive relationship in total sulfur content and enzyme activity. Air pollutants accumulated in tree tissues were supposed to enhance the enzyme activity like POD providing the resistance mechanisms. Especially Pinus koraiensis and Platanus occidentalis had higher POD activity than other species. The increase of temporary POD activity against environmental stress appeared in sensitive trees and prolonged increase of POD activity played an important role in resistance mechanism. SOD and POD activities in all species had a positive correlation except Ginkgo biloba. Changes of SOD and POD activities were different between species and in most species SOD as well as POD seemed to participate in resistance mechanism.

  • PDF

Performance Evaluation of 1 N Class HAN/Methanol Propellant Thruster (HAN/메탄올 추진제를 사용하는 1 N급 추력기 성능 평가)

  • Lee, Jeongsub;Huh, Jeongmoo;Cho, Sungjune;Kim, Suhyun;Park, Sungjun;Kim, Sukyum;Kwon, Sejin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.299-304
    • /
    • 2013
  • The HAN which is an ionic liquid is a non-toxic monopropellant with high storability, and its specific impulse can be increased by blending methanol, thereby it can substitute the hydrazine. The HAN was synthesized by acid-base reaction of hydroxylamine and nitric acid, and the blending ratio of HAN and methanol is 8.2:1. The iridium catalyst was used to decompose the HAN, and 1 N class thruster with shower head type injector having one orifice was used to evaluate the HAN/Methanol propellant. The thermal stability of distributor was increased by using ceramic material to endure the high temperature of product gas. The preheating temperature of catalyst should be $400^{\circ}C$ at least for the complete decomposition. The feeding pressure should be increased to increase the $C^*$ efficiency, thereby the decomposition performance was decreased upstream catalyst, and the performance of thruster was decreased. The fine metal mesh was inserted after the injector to improve the atomization of propellant, thereby it can settle the performance decrease problem. The phenomenon of performance decrease was remarkably improved owing to the insertion of fine metal mesh.

Effect of Iron Activators on the Persulfate Oxidation of Polycyclic Aromatic Hydrocarbons (PAHs) in Contaminated Soils (다환방향족 탄화수소(PAHs) 오염토양의 과황산 산화 시 철 활성화제의 영향)

  • Choi, Jiyeon;Park, Jungdo;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.62-73
    • /
    • 2020
  • PAHs commonly found in industrial sites such as manufactured gas plants (MGP) are potentially toxic, mutagenic and carcinogenic, and thus require immediate remediation. In-situ chemical oxidation (ISCO) is known as a highly efficient technology for soil and groundwater remediation. Among the several types of oxidants utilized in ISCO, persulfate has gained significant attention in recent years. Peroxydisulfate ion (S2O82-) is a strong oxidant with very high redox potential (E0 = 2.01 V). When mixed with Fe2+, it is capable of forming the sulfate radical (SO4) that has an even higher redox potential (E0 = 2.6 V). In this study, the influence of various iron activators on the persulfate oxidation of PAHs in contaminated soils was investigated. Several iron sources such as ferrous sulfate (FeSO4), ferrous sulfide (FeS) and zero-valent iron (Fe(0)) were tested as a persulfate activator. Acenaphthene (ANE), dibenzofuran (DBF) and fluorene (FLE) were selected as model compounds because they were the dominant PAHs found in the field-contaminated soil collected from a MGP site. Oxidation kinetics of these PAHs in an artificially contaminated soil and the PAH-contaminated field soil were investigated. For all soils, Fe(0) was the most effective iron activator. The maximum PAHs removal rate in Fe(0)-mediated reactions was 92.7% for ANE, 83.0% for FLE, and 59.3% for DBF in the artificially contaminated soil, while the removal rate of total PAHs was 72.7% in the field-contaminated soil. To promote the iron activator effect, the effects of hydroxylamine as a reducing agent on reduction of Fe3+ to Fe2+, and EDTA and pyrophosphate as chelating agents on iron stabilization in persulfate oxidation were also investigated. As hydroxylamine and chelating agents (EDTA, pyrophosphate) dosage increased, the individual PAH removal rate in the artificially contaminated soil and the total PAHs removal rate in the field-contaminated soil increased.

A Study on the Fire Prevention Activities and Suppression Measures of Utility-Pipe Conduit (지하공동구 화재예방활동 및 진압대책에 관한 연구)

  • Lee, Jung-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.63-68
    • /
    • 2010
  • Utility-Pipe Conduit is, Housing and city effectively accommodate what they absolutely need power, communications, gas, pipeline, water supply, drainage, energy facilities etc, according to expansion of urban infrastructure are derived, several ways to solve problems in, collection facilities in place are maintained and managed facility. If Utility-Pipe Conduit is damaged, as well as national security, because their impact on society as a whole, by introducing large vulnerability in the fire prevention activities and suppression measures and disaster for our situation by introducing measures, comprehensive analysis of the fire risk, it shall establish fire prevention activities and suppression through analysis of Utility-Pipe Conduit design, institutional issues, the problem of fire protection facilities, fire spread phenomenon etc. Because of Utility-Pipe Conduit is an enclosed place, so incomplete combustion due to lack of oxygen supply that there are problem such dark smoke, carbon monoxide etc, toxic combustion products and heat generation and visual impairment is an issue difficult to enter. As well as fire prevention activities, the fire In light of the particularity of the under ground than above ground fire, so this phenomenon is weak fire fighting that fire to become effective fire fighting tactics, basically it is necessary difficulty softening, non-burn softening and prevent combustion expansion of the cable is installed on the Utility-Pipe Conduit, having to considering the specificity of the response command system and relevant organizations to establish an on-site, Structural identification and other information gathering required to record of Response agencies, keep air conditioning system 24 hours and strengthening Virtual Total Training of Response agen

Survey of Actual Conditions of Material Safety Data Sheet and Quantitative Risk Assessment of Toxic Substances : Substitutes for Degreasing Agents (일부 대체세정제 제조업체의 물질안전보건자료의 실태와 그 화학물질의 유해성 평가에 관한 연구)

  • Yoon, Chong-Guk;Jeon, Tae-Won;Chung, Chin-Kap;Lee, Myung-Hee;Lee, Sang-Il;Cha, Sang-Eun;Yu, Il-Je
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.2
    • /
    • pp.18-26
    • /
    • 2000
  • Since the regulation of MSDS (Material Safety Data Sheets) had started from July 1996, employers were required to furnish MSDS for the chemicals in use in their workplace. However, many MSDS did not contain upright information for the chemicals, and they were not updated regularly, and were not written in the standard format required by the Industrial Safety and Health Act (ISHA). The purposes of this study were 1) to examine the reliability of MSDS for mixed solvents, 2) to provide reliable MSDS to employers or employees, 3) to find out any difficulties in implementing MSDS after the initiation, and 4) to promote regular MSDS updating and to ensure the reliability of MSDS for chemical manufacturers. To check the reliability of MSDS of mixed chemicals, 21 samples of mostly degreasing solvents were collected along with their MSDS from the work place. The samples were analyzed by gas chromatography-mass selective detector(GC-MSD). Their components were classified as saturated hydrocarbon, cyclic hydrocarbon, aromatics, and halogen containing hydrocarbon, and the amount of each class were measured. Manufacture's MSDS were compared with the actual composition of the collected samples, and further examined the reliability by checking whether the chemicals analyzed were included in the MSDS correctly. Finally, each item of MSDS was evaluated whether the MSDS correspond to the regulation required by ISHA. The results were following: 1) most of the degreasing solvents in MSDS were incorrect in their composition and contents, 2) the information in the MSDS including hazard classification, exposure level, toxicity, regulatory information were incorrectly provided, and 3) some MSDS did not disclose carcinogens in their MSDS. Continuous monitoring of MSDS was required to ensure reliability of MSDS. The Chemicals containing hydrocarbons from C10-C15 need to be tested to provide toxicity data. In addition, governmental support for providing correct MSDS was recommended to ensure reliability of MSDS. The MSDS regulation relating to the confidential business information may need to be revised to ensure reliability of MSDS.

  • PDF