• Title/Summary/Keyword: Towing tank experiment

Search Result 49, Processing Time 0.024 seconds

The Effects of Skegs and Length of Towline on Trajectory Characteristics of Barge (스케그의 유무와 예인삭의 길이가 부선의 궤적 특성에 미치는 영향)

  • Lee, Sang-min;Luong, Tu-Nam;Im, Nam-Kyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.385-392
    • /
    • 2017
  • This research presents the results of a study on the trajectory characteristics of barges with different configurations. A towing experiment was carried out in a water tank with three types of barges in two cases: with and without skegs. The effects of towline length on trajectory were also observed. This study analyzed and compared the length and amplitude of trajectory shapes for each barge in various combinations. It revealed that the trajectory of a barge is influenced not only by skegs but also by the length of the towline. As a result of this work, it can be clearly seen that skegs significantly improve the course stability of a towed barge regardless of differences in bow shape or towline length. Water tank test results also indicated that the length of a towline plays a key role in affecting the trajectory characteristics of a barge-towing system. The length and amplitude of the slewing motion of a barge increased with an increase in the length of the towline connected to the barge. Validation of the present research results should be carried out by further experiments and computational comparisons in the near future.

Bow-Hull Form Development of a Container Ship by Using Finite Difference Method (유한차분법을 이용한 컨테이너선의 선수선형 개량)

  • S.C. Shin;U.C. Jeong;Y.G. Lee;K.J. Kang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.1-6
    • /
    • 1992
  • The finite difference simulation method for ship waves is introduced for hull form improvement. Numerical simulations were performed for a series of modified hull forms and the simulated results were used for the determination of the better hull forms. A 4,400 TEU container carrier which was designed and experimented in towing tank was chosen for the purpose. The calculation results are compared with those of model test, of simplified Neumann-kelvin problems and of Rankine source method. In this study, it is shown that the combination of the computer simulation by our method with the experiment provides one of the most economical and reliable procedures of hull form improvement and that the degree of accuracy of this method is so high that it can cope with very practical design purposes.

  • PDF

An Advanced Study on the Development of Marine Lifting Devices Enhanced by the Blowing Techniques

  • Ahn Haeseong;Yoo Jaehoon;Kim Hyochul
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.4
    • /
    • pp.1-9
    • /
    • 2004
  • High lifting devices used for control purposes have received much attention in the marine field. Hydrofoils for supporting the hull, roll stabilizer fins for developing the motion damping performance, rudders for maneuverability are the well-known devices. In the present study, the ability of the rudder with flap to produce high lift was analyzed. The boundary layer control, one of the flow control techniques, was adopted. Especially, to build the blown flap, a typical and representative type of a boundary layer control, a flapped rudder was designed and manufactured so that it could eject the water jet from the gap between the main foil and the flap to the flap surface tangentially. And it was tested in the towing tank. Simultaneously, to know the information about the 2-dimensional flow field, a fin model with similar characteristics as the rudder model applicable for the motion control was made and tested in the cavitation tunnel. In addition, local flow measurements were carried out to obtain physical information, for example, a surface pressure measurement and flow visualization around the flap. And CFD simulation was used to obtain information difficult to collect from the experiment about the 2-dimensional flow.

Calculation of Flows around Container Ship Models with Different Reynolds Numbers (Reynolds 수가 다른 컨테이너선 모형 주위의 유동 계산)

  • Kim, Byoung-Nam;Park, Jong-Hwan;Kim, Wu-Joan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.258-266
    • /
    • 2007
  • CFD calculations are performed for KRISO 3600TEU container ship(KCS) models with different Reynolds numbers. Numerical calculations of the turbulent flows with the free surface around KCS have been carried out at $Re=0.791{\times}106\;and\;Re=1.4{\times}107$ using a standard Fluent package. In both cases, Froude number is fixed with 0.26 and wave elevation is simulated by using the VOF method. The calculated results at $Re=1.4{\times}107\;and\;Re=0.791{\times}106$ are compared with the experiment data of KRISO towing tank test and RIMS CWC test, respectively. Boundary layer thickness and wake field shows Reynolds number differences. There are some changes in wave pattern behind transom stern.

A Fusion Positioning System of Long Baseline and Pressure Sensor for Ship and Harbor Inspection ROV

  • Seo, Dong-Cheol;Lee, Yong-Hee;Jo, Gyung-Nam;Choi, Hang-Shoon
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.1
    • /
    • pp.36-46
    • /
    • 2007
  • The maintenance of a ship is essential for safe navigation and hence regular surveys are prescribed according to the rule of classification societies. A hull inspection is generally performed by professional divers, but it takes a long time and the efficiency is low in terms of time and cost. In this research, a ROV(Remotely Operated Vehicle) named as SNU-ROV(Seoul National University-ROV) is developed to replace the conventional inspection method. In this system, the ROV is intended to be used for inspecting ship and harbor because harbor inspection is merging as a safety measure against any possible terror actions. In order to increase the efficiency of inspection, the ROV must be able to measure the exact position of damages. SNU-ROV has a positioning system based on LBL(Long Base Line). In shallow water such as harbor, however, LBL has bad DOP(Dilution of Precision) in the depth direction due to the limited depth. Thus LBL only can not locate the exact depth position. To solve the DOP problem, a pressure sensor is introduced to LBL and a complementary filter is attached by using indirect feedback Kalman filter. Thus developed positioning system is verified by simulation and experiment in towing tank.

A Study on the Underwater Navigation System with Adaptive Receding Horizon Kalman Filter (적응 이동 구간 칼만 필터를 이용한 무인 잠수정의 항법 시스템에 관한 연구)

  • Jo, Gyung-Nam;Seo, Dong-C.;Choi, Hang-S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.269-279
    • /
    • 2008
  • In this paper, an underwater navigation system with adaptive receding horizon Kalman filter (ARHKF) is studied. It is well known that incorrect statistical information and temporal disturbance invoke errors of any navigation systems with Kalman filter, which makes the autonomous navigation difficult in real underwater environment. In this context, two kinds of problems are herein considered. The first one is the development of an algorithm, which estimates the noise covariance of a linear discrete time-varying stochastic system. The second one is the implementation of ARHKF to underwater navigation systems. The performance of the derived estimation algorithm of noise covariance and the ARHKF are verified by simulation and experiment in the towing tank of Seoul National University.

Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine

  • Tian, Wenlong;Mao, Zhaoyong;Ding, Hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.782-793
    • /
    • 2018
  • A small-scale horizontal axis hydrokinetic turbine is designed, manufactured and studied both experimentally and numerically in this study. The turbine is expected to work in most of China's sea areas where the ocean current velocity is low and to supply electricity for remote islands. To improve the efficiency of the turbine at low flow velocities, a magnetic coupling is used for the non-contacting transmission of the rotor torque. A prototype is manufactured and tested in a towing tank. The experimental results show that the turbine is characterized by a cut-in velocity of 0.25 m/s and a maximum power coefficient of 0.33, proving the feasibility of using magnetic couplings to reduce the resistive torque in the transmission parts. Three dimensional Computational Fluid Dynamics (CFD) simulations, which are based on the Reynolds Averaged Navier-Stokes (RANS) equations, are then performed to evaluate the performance of the rotor both at transient and steady state.

Concurrent Mapping and Localization using Range Sonar in Small AUV, SNUUVI

  • Hwang Arom;Seong Woojae;Choi Hang Soon;Lee Kyu Yuel
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.4
    • /
    • pp.23-34
    • /
    • 2005
  • Increased usage of AUVs has led to the development of alternative navigational methods that use the acoustic beacons and dead reckoning. This paper describes a concurrent mapping and localization (CML) scheme that uses range sonars mounted on SNUUV­I, which is a small test AUV developed by Seoul National University. The CML is one of such alternative navigation methods for measuring the environment that the vehicle is passing through. In addition, it is intended to provide relative position of AUV by processing the data from sonar measurements. A technique for CML algorithm which uses several ranging sonars is presented. This technique utilizes an extended Kalman filter to estimate the location of the AUV. In order for the algorithm to work efficiently, the nearest neighbor standard filter is introduced as the algorithm of data association in the CML for associating the stored targets the sonar returns at each time step. The proposed CML algorithm is tested by simulations under various conditions. Experiments in a towing tank for one dimensional navigation are conducted and the results are presented. The results of the simulation and experiment show that the proposed CML algorithm is capable of estimating the position of the vehicle and the object and demonstrates that the algorithm will perform well in the real environment.

Vortex induced vibration of circular pipes; the experiment in a water tank (원형 세장 실린더의 와 유기 진동;수조 실험 결과)

  • Kim, Yang-Hann;Park, Joo-Bae;Hong, Sup;Choi, Yoon-Rak
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.478-483
    • /
    • 2001
  • We experimentally attempted to understand the vibration characteristics of a flexible pipe excited by vortex shedding. This has been extensively studied in the past decades (For example, see [2-9]). However, there are still areas that need more study. One of them is to study the relation between spatial characteristics of a flow induced vibrating pipe, such as its length, the distribution of wave number, and frequency responses. A non-linear mechanism between the responses of in-line and cross-flow directions is also an area of interests, if the pipe is relatively long so that structural modal density is reasonably high. In order to investigate such areas, two kinds of instrumented pipe were designed. The instrumented pipes, of which the lengths are equally 6m, are wound with rubber and silicon tape in different ways, having different vortex shedding conditions. One has uniform cross-section of diameter of 26. 7mm, and the other has equally spaced by 4 sub-sections, which are composed of different diameters of 75.9, 61.1, 45.6 and 26.7mm. Both pipes are towed in a water tank (200m ${\times}$ 16m ${\times}$ 7m) so that they experienced different vortex shedding excitations. The towing pipe experiments exhibit several valuable features. One of them is that the natural frequencies and their corresponding strain mode shapes dominate the strain response of the uniform pipe. However, for those of non-uniform pipe, the responses are more likely local and many modes participate in it.

  • PDF

An Experimental Study for the Mechanical Properties of Model Ice Grown in a Cold Room (Cold Room을 이용한 모형빙의 재료특성에 관한 실험적 연구)

  • Kim, Jung-Hyun;Choi, Kyung-Sik;Jeong, Seong-Yeob;Seo, Young-Kyo;Cho, Seong-Rak;Lee, Chun-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.64-70
    • /
    • 2008
  • A full-scale field experiment is an important part in the design of ships and offshore structures. Full-scale tests in the ice-covered sea, however, are usually very expensive and difficult tasks. Model tests in a refrigerated ice tank may substitute this difficulty of full-scale field tests. One of the major tasks to perform proper model tests in an ice towing tank is to select a realistic material for model ice which shows correct similitude with natural sea ice. This study focuses on the testing material properties and the selection of model ice material which will be used in an ice model basin. The first Korean ice model basin will be constructed at the Maritime & Ocean Engineering Research Institute (MOERI) in 2009. With an application to the MOERI ice model basin, in this study the material properties of EG/AD/S model ice of IOT (Institute for Ocean Technology) Canada, were tested. Through comprehensive bending tests, the elastic modulus and the flexural strength of EG/AD/S model ice were evaluated and the results were compared with published test results from Canada. Instead of using an ice model basin, a cold room facility was used for making a model ice specimen. Since the cold room adopts a different freezing procedure to make model ice, the strength of the model ice specimen differs from the published test results. The reason for this difference is discussed and the future development for a making model ice is recommended.