• 제목/요약/키워드: Touch typing

검색결과 13건 처리시간 0.019초

3축 가속도센서를 이용한 스마트폰 컨트롤러 시스템 (Smartphone Controller System using 3-D Acceleration Sensor)

  • 나영식;정동근;이기영
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.23-28
    • /
    • 2010
  • 최근 스마트폰을 가지고 있는 사람이 증가하고 있는 추세이며 이에 대한 다양한 연구가 활발히 진행 중이다. 이러한 상황에서 센서기술과 스마트폰의 융합으로 다양한 기능을 제공한다. 본 논문에서 제안한 시스템은 컨트롤러에서 3축가속도센서를 통한 사용자의 움직임에 대한 가속도정보를 추출하며 이 가속도 정보를 블루투스를 통하여 스마트폰에 전송한다. 기존의 스마트폰에서 사용되던 터치입력이나 버튼입력방식이 아닌 동작에 따른 3축 가속도센서를 이용한 입력방식이므로 언제 어디서든 스마트폰을 직접 만지지 않아도 컨트롤이 가능하다. 또한 다양한 기능성 애플리케이션의 개발로 인하여 활용도가 매우 높다.

제한된 한글 입력환경을 위한 음소기반 근사 문자열 검색 시스템 (A Phoneme-based Approximate String Searching System for Restricted Korean Character Input Environments)

  • 윤태진;조환규;정우근
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권10호
    • /
    • pp.788-801
    • /
    • 2010
  • 모바일 기기가 발전함에 따라 입력 수단에 대한 연구는 중요한 이슈이다 키패드, 쿼티키패드, 터치, 음성인식 등 다양한 입력장치가 사용되고 있으나 아직 데스크톱 입력장치에 비해 편의성이 떨어져서 입력 시의 오타나 탈자 등의 오류가 포함되는 경우가 많다. 이러한 입력 오류는 문자 메시지 등 사람과의 의사소통에는 문제를 일으키지 않으나 사전, 주소록 등의 데이터베이스 검색에는 치명적인 오류로서 원하는 검색 결과를 얻지 못하게 된다. 특히 한글의 경우 자음과 모음의 조합을 통해 글자를 생성하는 특성상 1만자가 넘는 글자의 조합이 가능하여 영문에 비하여 오류의 빈도가 높다. 기존의 검색 시스템은 Suffix Tree등을 이용하여 입력 오류를 처리하지만 다양한 오류에 대응하기에는 한계가 있다. 본 논문에서는 오자, 탈자 등의 입력 오류를 허용하면서 빠른 검색이 가능한 근사 한글 단어 검색 시스템을 제안하고자 한다. 이 시스템은 기존의 알파벳에 적용된 근사 문자열 검색(Approximate String Searching)을 한글에 효과적으로 적용할 수 있는 여러 가지 알고리즘과 기법이 포함되어 있다. 그리고 제안된 시스템을 이용한 변형 욕설 필터링 시스템의 개발에 대해 이야기하고자 한다. 이 시스템은 유저의 각종 변형 욕설 입력에 대해 90% 이상의 필터링 성능을 보였다.

Wearable Computers

  • Cho, Gil-Soo;Barfield, Woodrow;Baird, Kevin
    • 섬유기술과 산업
    • /
    • 제2권4호
    • /
    • pp.490-508
    • /
    • 1998
  • One of the latest fields of research in the area of output devices is tactual display devices [13,31]. These tactual or haptic devices allow the user to receive haptic feedback output from a variety of sources. This allows the user to actually feel virtual objects and manipulate them by touch. This is an emerging technology and will be instrumental in enhancing the realism of wearable augmented environments for certain applications. Tactual displays have previously been used for scientific visualization in virtual environments by chemists and engineers to improve perception and understanding of force fields and of world models populated with the impenetrable. In addition to tactual displays, the use of wearable audio displays that allow sound to be spatialized are being developed. With wearable computers, designers will soon be able to pair spatialized sound to virtual representations of objects when appropriate to make the wearable computer experience even more realistic to the user. Furthermore, as the number and complexity of wearable computing applications continues to grow, there will be increasing needs for systems that are faster, lighter, and have higher resolution displays. Better networking technology will also need to be developed to allow all users of wearable computers to have high bandwidth connections for real time information gathering and collaboration. In addition to the technology advances that make users need to wear computers in everyday life, there is also the desire to have users want to wear their computers. In order to do this, wearable computing needs to be unobtrusive and socially acceptable. By making wearables smaller and lighter, or actually embedding them in clothing, users can conceal them easily and wear them comfortably. The military is currently working on the development of the Personal Information Carrier (PIC) or digital dog tag. The PIC is a small electronic storage device containing medical information about the wearer. While old military dog tags contained only 5 lines of information, the digital tags may contain volumes of multi-media information including medical history, X-rays, and cardiograms. Using hand held devices in the field, medics would be able to call this information up in real time for better treatment. A fully functional transmittable device is still years off, but this technology once developed in the military, could be adapted tp civilian users and provide ant information, medical or otherwise, in a portable, not obstructive, and fashionable way. Another future device that could increase safety and well being of its users is the nose on-a-chip developed by the Oak Ridge National Lab in Tennessee. This tiny digital silicon chip about the size of a dime, is capable of 'smelling' natural gas leaks in stoves, heaters, and other appliances. It can also detect dangerous levels of carbon monoxide. This device can also be configured to notify the fire department when a leak is detected. This nose chip should be commercially available within 2 years, and is inexpensive, requires low power, and is very sensitive. Along with gas detection capabilities, this device may someday also be configured to detect smoke and other harmful gases. By embedding this chip into workers uniforms, name tags, etc., this could be a lifesaving computational accessory. In addition to the future safety technology soon to be available as accessories are devices that are for entertainment and security. The LCI computer group is developing a Smartpen, that electronically verifies a user's signature. With the increase in credit card use and the rise in forgeries, is the need for commercial industries to constantly verify signatures. This Smartpen writes like a normal pen but uses sensors to detect the motion of the pen as the user signs their name to authenticate the signature. This computational accessory should be available in 1999, and would bring increased peace of mind to consumers and vendors alike. In the entertainment domain, Panasonic is creating the first portable hand-held DVD player. This device weight less than 3 pounds and has a screen about 6' across. The color LCD has the same 16:9 aspect ratio of a cinema screen and supports a high resolution of 280,000 pixels and stereo sound. The player can play standard DVD movies and has a hour battery life for mobile use. To summarize, in this paper we presented concepts related to the design and use of wearable computers with extensions to smart spaces. For some time, researchers in telerobotics have used computer graphics to enhance remote scenes. Recent advances in augmented reality displays make it possible to enhance the user's local environment with 'information'. As shown in this paper, there are many application areas for this technology such as medicine, manufacturing, training, and recreation. Wearable computers allow a much closer association of information with the user. By embedding sensors in the wearable to allow it to see what the user sees, hear what the user hears, sense the user's physical state, and analyze what the user is typing, an intelligent agent may be able to analyze what the user is doing and try to predict the resources he will need next or in the near future. Using this information, the agent may download files, reserve communications bandwidth, post reminders, or automatically send updates to colleagues to help facilitate the user's daily interactions. This intelligent wearable computer would be able to act as a personal assistant, who is always around, knows the user's personal preferences and tastes, and tries to streamline interactions with the rest of the world.

  • PDF