• Title/Summary/Keyword: Touch screen sensing

Search Result 23, Processing Time 0.021 seconds

Design of a Small-Area, Low-Power, and High-Speed 128-KBit EEPROM IP for Touch-Screen Controllers (터치스크린 컨트롤러용 저면적, 저전력, 고속 128Kb EEPROMIP 설계)

  • Cho, Gyu-Sam;Kim, Doo-Hwi;Jang, Ji-Hye;Lee, Jung-Hwan;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2633-2640
    • /
    • 2009
  • We design a small-area, low-power, and high-speed EEPROM for touch screen controller IC. As a small-area EEPROM design, a SSTC (side-wall selective transistor) cell is proposed, and high-voltage switching circuits repeated in the EEPROM core circuit are optimized. A digital data-bus sensing amplifier circuit is proposed as a low-power technology. For high speed, the distributed data-bus scheme is applied, and the driving voltage for both the EEPROM cell and the high-voltage switching circuits uses VDDP (=3.3V) which is higher than the logic voltage, VDD (=1.8V), using a dual power supply. The layout size of the designed 128-KBit EEPROMIP is $662.31{\mu}m{\times}1314.89{\mu}m$.

Design and Development of Multiple Input Device and Multiscale Interaction for GOCI Observation Satellite Imagery on the Tiled Display (타일드 디스플레이에서의 천리안 해양관측 위성영상을 위한 다중 입력 장치 및 멀티 스케일 인터랙션 설계 및 구현)

  • Park, Chan-Sol;Lee, Kwan-Ju;Kim, Nak-Hoon;Lee, Sang-Ho;Seo, Ki-Young;Park, Kyoung Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.541-550
    • /
    • 2014
  • This paper describes a multi-scale user interaction based tiled display visualization system using multiple input devices for monitoring and analyzing Geostationary Ocean Color Imager (GOCI) observation satellite imagery. This system provides multi-touch screen, Kinect motion sensing, and moblie interface for multiple users to control the satellite imagery either in front of the tiled display screen or far away from a distance to view marine environmental or climate changes around Korean peninsular more effectively. Due to a large amount of memory required for loading high-resolution GOCI satellite images, we employed the multi-level image load technique where the image was divided into small tiled images in order to reduce the load on the system and to be operated smoothly by user manipulation. This system performs the abstraction of common input information from multi-user Kinect motion and gestures, multi-touch points and mobile interaction information to enable a variety of user interactions for any tiled display application. In addition, the unit of time corresponding to the selected date of the satellite images are sequentially displayed on the screen and multiple users can zoom-in/out, move the imagery and select buttons to trigger functions.

Technology Trend and Requirement of Mobile Displays Using Low-Temperature Poly-Si (LTPS) Technologies

  • Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.409-412
    • /
    • 2007
  • A lot of research for system-on-panel(SOP) have been done to integrate display systems including data driver, gate driver, timing controller, DC-DC converter, and smart functions such as embedded touch screen, ambient brightness sensing and luminance control, finger printing on the glass. Recently, the cost of an one-chip driver IC with various functions has decreased rapidly, and new mobile display interface technologies have been introduced. So it is necessary to examine the feasibility of SOP for practical mobile applications. In this paper, we will re-examine LTPS technologies for mobile displays in terms of various aspects and discuss the practical limitations on SOP technology and future technology trend of mobile displays.

  • PDF