• 제목/요약/키워드: Total-Error-Rate Minimization

검색결과 4건 처리시간 0.023초

정확히 재가중되는 온라인 전체 에러율 최소화 기반의 객체 추적 (Object Tracking Based on Exactly Reweighted Online Total-Error-Rate Minimization)

  • 장세인;박충식
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.53-65
    • /
    • 2019
  • 영상 기반의 보안 시스템의 증가함에 따라 각 용도마다 다른 다양한 객체들에 대한 처리들이 중요해지고 있다. 객체 추적은 객체 인식, 검출과 같은 작업들과 함께 필수적인 작업으로 다뤄진다. 이 객체 추적을 달성하기 위해서 다양한 머신러닝이 적용될 수 있다. 성공적인 분류기로써 전체 에러율 최소화(total-error-rate minimization) 기반의 방법론이 사용될 수 있다. 이 전체 에러율 최소화 기반의 방법론은 오프라인 학습을 기반으로 하고 있다. 객체 추적은 실시간으로 처리하며 갱신해야하는 것이 필수적이므로 온라인 학습(online learning)을 기반으로 하는 것이 적합하다. 온라인 전체 에러율 최소화 방법론이 개발되었지만 점근적으로 재가중되는(approximately reweighted) 작업이 포함되어 에러를 누적시킬 수 있다는 단점이 있다. 본 논문에서는 정확하게 재가중되는(exactly reweighted) 방법론을 제안하면서 온라인 전체 에러율 최소화가 달성되었다. 이 제안된 온라인 학습 방법론을 객체 추적에 적용하여 총 8개의 데이터베이스에서 다른 추적 방법론들 보다 좋은 성능이 달성되었다.

Margin Adaptive Optimization in Multi-User MISO-OFDM Systems under Rate Constraint

  • Wei, Chuanming;Qiu, Ling;Zhu, Jinkang
    • Journal of Communications and Networks
    • /
    • 제9권2호
    • /
    • pp.112-117
    • /
    • 2007
  • In this paper, we focus on the total transmission power minimization problem for downlink beamforming multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems while ensuring each user's QoS requirement. Although the linear integer programming (LIP) solution we formulate provides the performance upper bound of the margin adaptive (MA) optimization problem, it is hard to be implemented in practice due to its high computational complexity. By regarding each user's equivalent channel gain as approximate independent values and using iterative descent method, we present a heuristic MA resource allocation algorithm. Simulation results show that the proposed algorithm efficiently converges to the local optimum, which is very close to the performance of the optimal LIP solution. Compared with existing space division multiple access (SDMA) OFDM systems with or without adaptive resource allocation, the proposed algorithm achieves significant performance improvement by exploiting the frequency diversity and multi-user diversity in downlink multiple-input single-output (MISO) OFDM systems.

평활 잔차 오류 정규화를 통한 자연 영상의 압축센싱 복원 (Compressive Sensing Recovery of Natural Images Using Smooth Residual Error Regularization)

  • ;;;박영현;전병우
    • 전자공학회논문지
    • /
    • 제51권6호
    • /
    • pp.209-220
    • /
    • 2014
  • 압축센싱은 성긴 (sparse) 신호에 대해 Nyquist rate 미만의 샘플링으로도 신호 획득이 가능하다는 것을 수학적으로 증명한 새로운 개념이다. 그동안 영상분야 압축센싱을 위한 수많은 복원 알고리즘들이 제안되어 왔으나, 낮은 측정률 하에서는 복원 화질 측면에서 아직 개선할 점이 많다. 일례로, 자연 영상의 압축센싱 복원 화질 향상을 위해, 영상과 관련한 사전 정보들로부터 정규화 식을 도출하여 복원에 적용해 볼 수 있을 것이다. 따라서, 본 논문에서는 Dantzig selector 및 평활 필터(가우시안 필터 및 nonlocal 평균 필터)기반의 평활 잔차 오류 정규화 방법을 제안한다. 또한, 복원 영상의 객체 및 배경에서 발생하는 edge 정보를 우수하게 보전하는 것으로 알려진 Total variation 기반 최소화 알고리즘에 적용하여 복원 영상의 화질을 향상시키는 방법을 제안한다. 제안하는 구조는 잔차신호의 평활화를 활용한다는 측면에서 새로운 압축센싱 복원 방식이라고 할 수 있다. 실험 결과, 제안방법은 기존 방법들에 비해 객관적 및 주관적 화질 측면에서 더 높은 성능 향상을 보여주었으며, 특히 기존 Bayesian 압축센싱 복원 방식과 비교 시 최대 9.14 dB 성능이 향상되었다.

Subcarrier and Power Allocation for Multiuser MIMO-OFDM Systems with Various Detectors

  • Mao, Jing;Chen, Chen;Bai, Lin;Xiang, Haige;Choi, Jinho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권10호
    • /
    • pp.4738-4758
    • /
    • 2017
  • Resource allocation plays a crucial role in multiuser multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) systems to improve overall system performance. While previously proposed resource allocation algorithms are mainly designed from the point of view of the information-theoretic, we formulate the resource allocation problem as an average bit error rate (BER) minimization problem subject to a total power constraint when considering employing realistic MIMO detection techniques. Subsequently, we derive the optimal subcarrier and power allocation algorithms for three types of well-known MIMO detectors, including the maximum likelihood (ML) detector, linear detectors, and successive interference cancellation (SIC) detectors. To reduce the complexity, we also propose a two-step suboptimal algorithm that separates subcarrier and power allocation for each detector. We also analyze the diversity gain of the proposed suboptimal algorithms for various MIMO detectors. Simulation results confirm that the proposed suboptimal algorithm for each detector can achieve a comparable performance with the optimal allocation with a much lower complexity. Moreover, it is shown that the suboptimal algorithms perform better than the conventional algorithms that are known in the literature.