• 제목/요약/키워드: Total trihalomethanes (TTHMs)

검색결과 3건 처리시간 0.016초

수영장 욕조수의 소독방법에 따른 THMs 발생 특성 (The Characteristics of THMs Production by Different Disinfection Methods in Swimming Pools Water)

  • 이진;하광태;조경덕
    • 한국환경보건학회지
    • /
    • 제32권2호
    • /
    • pp.171-178
    • /
    • 2006
  • The objectives of this study were to investigate the formation of trihalomethanes(THMs) and to compare the concentration level of THMs of swimming pools water by different disinfection methods such as chlorine, ozone-chlorine, and salt brine electrolysis generator (SBEG). The concentration of chloroform was the highest in the chlorine system, and the SBEG was the highest in the production of bromodichloromethane (BDCM), dibromochloromethane (DBCM) and bromoform. The average concentration of total trihalomethanes (TTHMs) in three disinfection systems were $64.5{\pm}27.4mg/l(SBEG),\;43.8{\pm}22.3mg/l(chlorine)$, and $30.6{\pm}16.1mg/l(ozone-chlorine)$, respectively. In chlorine and ozone-chlorine disinfection system, chloroform concentration was highest, followed by BDCN, then DBCM. In the SBEG, TTHMs was composed of 42% of chloroform, 28.9% of bromoform, 15.1% of BDCM and 14% of DBCM, respectively. The strongest correlation was obtained in the levels of chloroform and TTHMs in chlorine, and ozone-chlorine disinfection systems from both indoor and outdoor swimming pools ($r=0.989{\sim}0.999$, p<0.01). In the SBEG, the levels of BDCM and TTHMs showed a good correlation (r=0.913, p<0.01). In chlorine and ozone-chlorine disinfection systems at indoor swimming pools, pH, TOC and $KMnO_4$ consumption showed strong correlation with chloroform and TTHMs concentrations (p<0.01). In the SBEG, pH and TOC were also strongly correlated with chloroform (p<0.01). pH and TTHMs were correlated as well (p<0.05).

농촌지역 마을상수 중 trihalomethanes의 농도 분포 및 생성 특성 (Concentration distributions and formation characteristics of trihalomethanes in drinking water supplies to rural communities)

  • 김희갑;김세영
    • 분석과학
    • /
    • 제28권1호
    • /
    • pp.58-64
    • /
    • 2015
  • 이 연구에서는 농촌지역 마을상수 중에 함유된 trihalomethanes (THMs)의 농도 분포 및 발생 특성을 파악하였다. 농촌지역의 마을상수 시료는 2010년과 2011년 여름에 강원도 춘천시의 40가정에서 두 차례에 걸쳐 채취하였고, 도시상수 시료는 2011년의 같은 기간에 비교 목적으로 20곳의 수도꼭지에서 채취하였다. 현장에서 수온, pH 및 잔류염소(총 및 유리) 농도를 측정하였고, 물 시료는 실험실에서 용존 유기탄소(DOC)와 THMs 농도에 대해 분석하였다. 마을상수 중 DOC의 평균 농도는 원수로 사용된 지하수와 지표수 간에 거의 차이를 보이지 않았다(1.81 vs. 1.91 mg/L). 그러나 마을상수의 지하수에서($9.77{\mu}g/L$)의 총 THMs(TTHMs)의 평균 농도는 지표수보다($2.85{\mu}g/L$) 훨씬 더 높았고, 도시상수 중 TTHMs의 평균 농도($10.8{\mu}g/L$)와 유사하였다. 도시상수와는 다르게, 마을상수(특히 지하수)는 dibromochloromethane (DBCM)과 같은 더 많이 브롬화된 THMs을 함유하였는데, 이는 마을상수의 원수 중에 bromide ion(Br-)이 비교적 높은 수준으로 존재함을 암시하였다. 이 연구를 통해 마을상수는 도시상수와는 다른 THMs 생성 특성을 나타내는 것을 알 수 있었는데, 이것은 아마도 원수의 수질 특성의 차이에서 비롯되는 것으로 생각된다.

제주시 정수장 처리수의 급수과정별 수질변화 특성 (Water Quality Change Characteristics of Treated Water in Distribution System of Water Treatment Plant of Jeiu City)

  • 한경용;이민규;정호진;감상규
    • 한국환경과학회지
    • /
    • 제16권1호
    • /
    • pp.81-94
    • /
    • 2007
  • The purpose of this work is to investigate the water quality change characteristics of treated water in water distribution systems of Water Treatment Plants (WTPs) of Jeju City. For this, the raw water, treated water and tap water that did not pass (named as not pass-tap water) and passed through the water storage tank (named as pass-tap water) were sampled and analyzed monthly from September 2001 to August 2002, for four (W, S, B and O) WTPs except for D WTP (where treated water is not supplied continuously) among WTPs of Jeju City. The concentrations of $NO_3^-$ and $Cl^-$ of treated water in distribution systems changed little, but changed seasonally, which is considered to be based on the seasonal variation of the quality of raw water. The pH of treated water changed little in distribution systems for S WTP, but for the other WTPs, the pH of not pass-tap water was similar to that of treated water and the pH of pass-tap water was higher than that of treated water. The turbidity of treated water in distribution systems changed little except for W2 of W WTP and S4 and S5 of S WTP, where it was higher than that of each treated water. The residual chlorine concentrations between treated water and not pass-tap water changed little, but those between treated water and pass-tap water changed greatly, based on the its long residence time in water storage tank and so its reaction with organic matter, etc or its evaporation. The concentrations of TTHMs (total trihalomethanes) and $CHCl_3$ that induce cancers in water distribution systems of these WTPs, were much lower than their water quality criteria and those in other cities. The concentrations of TTHMs of treated water and not pass-tap water were similar, but concentrations of pass-tap water were 1.5 to 2.0 times higher than those of treated water and not pass-tap water, due to the reaction of residual chlorine and organic matter, etc, with the result of long residence time in water storage tank.