• Title/Summary/Keyword: Total room sound absorption

Search Result 3, Processing Time 0.017 seconds

Proposing a simple procedure for predicting the acoustical conditions in occupied classrooms from the measured unoccupied values (공석 시 측정값을 활용한 만석 시 강의실의 음향상태 예측법)

  • Ahn, Jae-Young;Choi, Young-Ji
    • Journal of Industrial Technology
    • /
    • v.41 no.1
    • /
    • pp.15-20
    • /
    • 2021
  • This work proposes a simple method to use the added absorption per person values to predict the expected values of the acoustical conditions in occupied classrooms. This method is based on the effects of the values of added absorption per person on the unoccupied total absorption values of the classrooms and on other room acoustical parameters. The total sound absorption in an unoccupied classroom can be calculated from measured reverberation times in the classroom. The expected occupied absorption can be calculated using equation which was obtained in a previous study (Choi, 2017) by fitting a linear regression line to a plot of total occupied absorption versus the corresponding unoccupied total absorption values measured in 12 university classrooms. The ratios of occupied-to-unoccupied sound absorption are used to predict increments in the values of acoustical parameters that result when occupants are added to the rooms.

Effects of the sound field characteristics of the receiving room on heavy-weight impact sound measurement generated by impact ball (임팩트 볼에 의한 중량충격음 측정에 있어서 수음실 음장특성의 영향)

  • Yoo, Seung-Yup;Lee, Sin-Young;Jeong, Young;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.622-625
    • /
    • 2006
  • This study is a fundamental investigation for standardization of the heavy-weight floor impact measuring method by the impact ball. The distribution chrematistics of floor impact sound level and reverberation time in a receiving room of the testing building for floor impact sound were measured with variations of number and arrangement of the sound-absorbing materials. Total 8 cases were investigated. The distribution of the floor impact sound level($L_{i,\;Fmax}$) was measured at 30 points with same intervals. The absorption coefficient of the room is 0.10 in case of installation of 6 absorbing materials and 0.02 in case of non-installation. The distribution shape of the impact sound pressure level was similar to the result of the bang machine driving at the measured frequency range. However, the overall reduction of the impact sound level investigated in the 125 to 500 Hz shows that the sound absorption characteristics of the receiving room actually affects the result of the heavy-weight impact measurement.

  • PDF

Estimating occupied university classroom acoustical parameters from unoccupied values (대학 강의실의 공석 시 측정값을 이용한 만석 시 음향지표의 예측)

  • Choi, Young-Ji
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.343-348
    • /
    • 2018
  • This paper proposes a simple procedure for estimating the acoustical parameter values in an occupied classroom from measurements in the unoccupied classroom. The total sound absorption in an unoccupied classroom can be calculated from measured reverberation times in the room. The expected occupied absorption can be calculated using equation that was obtained in a previous study (Choi, 2016) by fitting a linear regression line to a plot of total occupied absorption versus the corresponding unoccupied total absorption values measured in 12 university classrooms. The ratios of occupied-to-unoccupied sound absorption are used to predict increments in the values of acoustical parameters when occupants are added to the rooms. Occupied values of acoustical parameters can be estimated from unoccupied values and the change in total room absorption due to adding occupants.