• 제목/요약/키워드: Total removal

검색결과 1,863건 처리시간 0.025초

폐비닐 재활용 여재를 이용한 소규모 오수종말처리장의 효율검증 (Efficiency Verification of Small-Scale Sewage Treatment Plant Using Discussed Vinyl as Biofilm Media)

  • 임재명;김병욱;구본수
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.1-6
    • /
    • 1998
  • This study was conducted to use disused vinyl as biofilm for biological sewage treatment. Efficiency verification was performed on laboratory and on-site plant. In laboratory study, total biochemical oxygen demand(TBOD) removal rate was ranged 94.8~97 % in each hydraulic retention tim(HRT), 12, 16, 20, 24 hr, respectively. At that time, filling rate was 50 %. And effluent TBOD concentration was low ranged 3.64~6.28 mg/L. In on-site plant, TBOD removal rate was ranged 88.2~96.8 % and effluent TBOD concentration was 4.8~17.7mg/L. This concentration was lower than disign effluent concentration, 30mg/L. Total kjeldhal nitrogen(TKN) removal efficiency was ranged 56.8~90.9%. This was resulted higher than Lab. scale treatment efficiency.

  • PDF

은나노 모래를 이용한 모래여과에서 유기물질 제거 및 소독 효과에 관한 연구 (A Study on the Removal of Organics and Disinfection Effect in Sand Filter Using Nano Silver Sand)

  • 선용호
    • KSBB Journal
    • /
    • 제27권1호
    • /
    • pp.16-20
    • /
    • 2012
  • In this study, novel nano silver sand filtration method was compared with UV treatment and normal sand filtration method through filtering treated water from sewage treatment plant. As a result, $BOD_5$ removal rate of nano silver sand filtration showed higher approximately 31% and 23%, comparing with UV treatment and sand filtration. Moreover, $KMnO_4$ removal rate of nano silver sand was about 6.6 and 2.8 times higher than other two methods. In addition, it showed better for removing SS and total coliform, comparing with others. Also, there is no bacteria on nano silver sand after experiments. Therefore, nano silver sand filtration will be effective for advanced water treatment.

순환여과식 양식 시스템에 있어서의 고정화 탈진균에 의한 질산염 제거 (Nitrate Removal by Immobilized Denitrifying Bacteria in Recirculating Aquaculture System)

  • 김상희;김필균;김중균
    • 생명과학회지
    • /
    • 제9권6호
    • /
    • pp.698-703
    • /
    • 1999
  • For the nitrate removal in recirculating aquaculture system, a denitrifying bacterium, Pseudomonas fluorescens, was isolated from municipal sewage and the cells were immobilized in modified-polyvinly alchol (PVA) gel beads. The immobilized cells in both the fixed-and fluidized-bed reactors showed 98% of denitrification efficiency with 6hr HRT, and the removal efficiency of total organic carbon (TOC) was above 90%. Form scanning electron microscopy (SEM) observation, it was known that biofilm formed in fixed-bed reactor was thicker than that formed in fluidized-bed reactor as operation time passed.

  • PDF

도시하수 처리에 의한 미생물 오염의 제거효과에 관한 조사연구(I) -청계천 하수처리장을 중심으로- (An Analysis on Removal Effect of Biological Contaminants in the Process of Municipal Sewage Treatment System - On the Seoul Cheonggye Cheon Sewage Treatment Plant)

  • 유병태;정용
    • 환경위생공학
    • /
    • 제3권1호
    • /
    • pp.27-39
    • /
    • 1988
  • This investigation was carried out to evaluate the removal effect of biological contaminants for the municipal sewage treatment process at Cheonggye Cheon terminal plant which in the first plant for municipal sewage treatment in Seoul area. It was conducted in raw influent, primary treatment water and secondary treatment water from September, 1986 to July, 1987. The results were as follow; 1, The primary treatment could eliminate microbials for $65.38\%$ of total bacteria, $64.35\%$ of total coliform, $62.16\%$ of fecal coliform $69.48\%$ of pseudomonas and $64.70\%$ of fecal streptococci in averages for a year respectively. 2. The secondary treatment could eliminate microbials for $97.50\%$ of total bacteria, $97.30\%$of total coliform, $95.95\%$ of fecal coliform, $97.00\%$ of pseudomonas and $96.53\%$ of fecal streptococci in average for a year respectively. 3. In the detect rate of pathogenic agent, salmonella spp was decreased $12.5\%$ to $4.2\%$ in primary treatment and it was not detected in secondary treatment, shigella spp was detected $4.2\%$ in influent water but it was not detected in primary and secondary treatment. 4. In the seasonal variation of treatment effect, the removal of summer was the highest, and the removal of all item in winter was lower than the other seasons. 5. There was significant correlation between water temperature and microbal all items (P<0.05) $NH_3-N$ and Microbal items (P< 0.01) at raw water.

  • PDF

Multi-objective optimization of stormwater pipe networks and on-line stormwater treatment devices in an ultra-urban setting

  • Kim, Jin Hwi;Lee, Dong Hoon;Kang, Joo-Hyon
    • Membrane and Water Treatment
    • /
    • 제10권1호
    • /
    • pp.75-82
    • /
    • 2019
  • In a highly urbanized area, land availability is limited for the installation of space consuming stormwater systems for best management practices (BMPs), leading to the consideration of underground stormwater treatment devices connected to the stormwater pipe system. The configuration of a stormwater pipe network determines the hydrological and pollutant transport characteristics of the stormwater discharged through the pipe network, and thus should be an important design consideration for effective management of stormwater quantity and quality. This article presents a multi-objective optimization approach for designing a stormwater pipe network with on-line stormwater treatment devices to achieve an optimal trade-off between the total installation cost and the annual removal efficiency of total suspended solids (TSS). The Non-dominated Sorted Genetic Algorithm-II (NSGA-II) was adapted to solve the multi-objective optimization problem. The study site used to demonstrate the developed approach was a commercial area that has an existing pipe network with eight outfalls into an adjacent stream in Yongin City, South Korea. The stormwater management model (SWMM) was calibrated based on the data obtained from a subcatchment within the study area and was further used to simulate the flow rates and TSS discharge rates through a given pipe network for the entire study area. In the simulation, an underground stormwater treatment device was assumed to be installed at each outfall and sized proportional to the average flow rate at the outfall. The total installation cost for the pipes and underground devices was estimated based on empirical formulas using the flow rates and TSS discharge rates simulated by the SWMM. In the demonstration example, the installation cost could be reduced by up to 9% while the annual TSS removal efficiency could be increased by 4% compared to the original pipe network configuration. The annual TSS removal efficiency was relatively insensitive to the total installation cost in the Pareto-optimal solutions of the pipe network design. The results suggested that the installation cost of the pipes and stormwater treatment devices can be substantially reduced without significantly compromising the pollutant removal efficiency when the pipe network is optimally designed.

알루미늄의 전기분해를 이용한 오수 중의 인 제거 (Phosphorus Removal from Domestic Sewage by Electrolysis with Aluminium Electrodes)

  • 정경훈;최형일;정오진
    • 한국환경보건학회지
    • /
    • 제25권3호
    • /
    • pp.70-76
    • /
    • 1999
  • A laboratory experiment was performed to investigate the phosphorus removal using the activated sludge-electrolysis reactor which consisted of A$^2$/O system and aluminium electrodes as cathode and anode. In this system, the phosphorus was removed by aluminium ion, which was eluted from aluminiumelectrodes by electrolysis. In the batch experiments, when the current densities were 0.026, 0.052 and 0.08 A/dm$^2$, the phosphorus removal efficiencies for synthetic sewage were 66.4, 86.4 and 98.7% respectively. These results showed that the phosphorus removal efficiency increased with the increase of the current density. When the current values were 13, 26 and 40 mA respectively, the amounts of Al$^{3+}$ eluted from electrodes according to Faraday's law were 0.049, 0.07 and 0.12 g and Al/P mole ratio were 1.1, 2.0 and 3.41. In the continuous experiments, As hydraulic retention time(HRT) increased, COD and total nitrogen(T-N) removal efficiencies for domestic sewage increased. The average phosphorus removal rates of the activated sludge-electrolysis system were 97, 91, 80 and 80% at the HRT of 48, 24, 18 and 12 hours, respectively. Especially, the phosphorus removal rate in the activated sludge system with aluminium electrodes was higher than that in the system without aluminium electrodes.

  • PDF

AGS의 생물흡착을 이용한 TDS 제거 및 고농도 질소제거에 관한 연구 (TDS Removal using Bio-sorption with AGS and High Concentration Nitrogen Removal)

  • 엄한기;최유현;주현종
    • 한국물환경학회지
    • /
    • 제32권3호
    • /
    • pp.303-309
    • /
    • 2016
  • This study aimed to assay the biological removal of TDS (total dissolved solids) from RO (reverse osmosis) rejected water. Following bio-sorption of TDS with AGS (aerobic granular sludge), the effects of TDS on biological nitrogen removal were examined. The bio-sorption of TDS after AGS treatment was confirmed by checking for TDS removal efficiency and surface analysis of microorganisms with SEM and EDS. Then, the effects of TDS on biological nitrogen removal and the denitrification efficiency were evaluated using the MBR reactor. According to the results, the bio-sorption of TDS with AGS was 0.1 mg TDS/mg AGS, and we confirmed that the microorganism surfaces had adsorbed the TDS. Biological nitrogen removal efficiency was measured at inhibiting denitrification at 4,000 mg/L of TDS-injected material. Based on this study, it is necessary to pretreat TDS-containing RO rejected water and to maintain TDS concentration lower than a specific value (≤4,000 mg/L), when considering biological nitrogen removal.

LITHOAUTOTROPHIC NITROGEN REMOVAL WITH ANAEROBIC GRANULAR SLUDGE AS SEED BIOMASS AND ITS MICROBIAL COMMUNITY

  • Ahn, Young-Ho;Lee, Jin-Woo;Kim, Hee-Chul;Kwon, Soo-Youl
    • Environmental Engineering Research
    • /
    • 제11권4호
    • /
    • pp.173-180
    • /
    • 2006
  • Autotrophic nitrogen removal and its microbial community from a laboratory scale upflow anaerobic sludge bed reactor were characterized with dynamic behavior of nitrogen removal and sequencing result of molecular technique (DNA extraction, PCR and amplification of 16S rDNA), respectively. In the experiment treating inorganic wastewater, the anaerobic granular sludge from a full-scale UASB reactor treating industrial wastewater was inoculated as seed biomass. The operating results revealed that an addition of hydroxylamine would result in lithoautotrophic ammonium oxidation to nitrite/nitrate, and also hydrazine would play an important role for the success of sustainable nitrogen removal process. Total N and ammonium removal of 48% and 92% was observed, corresponding to nitrogen conversion of 0.023 g N/L-d. The reddish brown-colored granular sludge with a diameter of $1{\sim}2\;mm$ was observed at the lower part of sludge bed. The microbial characterization suggests that an anoxic ammonium oxidizer and an anoxic denitrifying autotrophic nitrifier contribute mainly to the nitrogen removal in the reactor. The results revealed the feasibility on development of high performance lithoautotrophic nitrogen removal process with its microbial granulation.

Phosphorus removal by lime-natural mineral dissolved solutions

  • Joohyun, Kim;Sunho, Yoon;Jueun, Jung;Sungjun, Bae
    • Membrane and Water Treatment
    • /
    • 제14권1호
    • /
    • pp.27-33
    • /
    • 2023
  • In previous studies, solely ferric (Fe3+) and calcium (Ca2+) ions were commonly used for removal of PO4-P (considered as T-P in this study) in wastewater via chemical precipitation. Herein, the removal of total phosphorus (T-P) in wastewater was performed using various mineral and lime dissolved solutions. The dissolution kinetics of different minerals (feldspar, olivine, elvan, illite, sericite, and zeolite) and lime was compared and used their solutions for T-P removal of real wastewater. The highest T-P removal (almost 90%) was obtained by the lime dissolved solution and followed by zeolite, illite, feldspar, and others. We observed a significant co-relationship (R of 0.96) between the amount of initial Ca2+ and T-P removal. This was induced by formation of hydroxyapatite-like mineral via Ca-P precipitation reaction at high pH solution. Furthermore, additional removal of suspended solid (SS) and chemical oxygen demand (COD) was achieved by only lime dissolved solution. Finally, the lime-feldspar dissolved solutions were prepared at different ratios (10-50%), which showed a successive T-P removal up to two times by samples of 40 and 50%.

Effects of Organic Loading Rates on Treatment Performance in a Polyvinylidene Media Based Fixed-Film Bioreactor

  • Ahmed, Zubair;Oh, Sang-Eun;Kim, In S.
    • Environmental Engineering Research
    • /
    • 제14권4호
    • /
    • pp.238-242
    • /
    • 2009
  • This study investigated the effects of organic loading rates on simultaneous carbon and nitrogen removal in an innovative fixed-film aerobic bioreactor. The fixed-film bioreactor (FFB) was composed of a two-compartment aeration tank, in which a synthetic filamentous carrier was submerged as biofilm support media, and a settling tank which polyvinylidene media (Saran) was used as settling aid for suspended solids. Three different organic loading rates, ranging from 0.92-2.02 kg chemical oxygen demand/$m^3$/day were applied by varying hydraulic retention time (HRT). The total soluble organic carbon removal efficiencies were in the range of 90-97%. The removal efficiency of ammonia was found to be in the range of 70-84%. Total nitrogen removal efficiency was found to be in the range of 40-45%, which indicates that denitrification reactions occurred simultaneously in the attached biofilm on the fibrous media in the aeration tank. The settling performance of suspended solids was significantly improved due to the presence of Saran media in the settling compartment, even for a short HRT. The fixed-film aerobic bioreactor used in this study demonstrated efficient treatment efficiency even at higher organic loading rates and at short HRTs.