• Title/Summary/Keyword: Total pressure recovery

Search Result 140, Processing Time 0.024 seconds

A Study of short supersonic ejector with shock generators (충격파 발생기를 적용한 짧은 초음속 이젝터에 관한 연구)

  • Lijo, Vincent;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.105-110
    • /
    • 2010
  • Supersonic ejectors are simple mechanical components, which generally perform mixing and recompression of two fluid streams. Ejectors have found many applications in engineering. In aerospace engineering, they are used for high altitude testing (HAT) of a propulsion system by reducing the pressure of a test chamber. It is composed of three major sections: a vacuum test chamber, a propulsive nozzle, and a supersonic exhaust diffuser (SED). This paper aims at the improvement in HAT facility by focusing attention on the vertical firing rocket test stand with shock generators. Shock generators are mounted inside the SED for improving the pressure recovery. The results clearly showed that the performance of the ejector-diffuser system was improved with the addition of shock generators. The improvement comes in the form of reduction of the starting pressure ratio and the vertical height of test stand. It is also shown that shock generators are useful in reducing the total pressure loss in the SED.

  • PDF

Application of Shock Generator to Supersonic Ejector Diffuser System (초음속 이젝터 디퓨져 시스템에서의 충격파 발생기 응용)

  • Lijo, Vincent;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.200-203
    • /
    • 2011
  • Supersonic ejectors are simple mechanical components, which generally perform mixing and recompression of two fluid streams. Ejectors have found many applications in engineering. In aerospace engineering, they are used for high altitude testing (HAT) of a propulsion system by reducing the pressure of a test chamber. It is composed of three major sections: a vacuum test chamber, a propulsive nozzle, and a supersonic exhaust diffuser (SED). This paper aims at the improvement in HAT facility by focusing attention on the vertical firing rocket test stand with shock generators. Shock generators are mounted inside the SED for improving the pressure recovery. The results clearly showed that the performance of the ejector-diffuser system was improved with the addition of shock generators. The improvement comes in the form of reduction of the starting pressure ratio and the vertical height of test stand. It is also shown that shock generators are useful in reducing the total pressure loss in the SED.

  • PDF

Intake Performance Characteristics according to S-duct Cross-section Shape in UAV (무인기 S형 흡기구의 단면 형상에 따른 흡기구 성능 특성)

  • Eom, Hee-Ok;Bae, Ji-Yeul;Lee, Namkyu;Kim, Jihyuk;Nam, Juyeong;Jo, Hana;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.107-114
    • /
    • 2019
  • In many military aircraft, s-shaped diffusers are used to prevent the fan blades of the turbofan engine from being exposed to the outside. The inlet configurations of the air intakes for military aircraft vary, such as the rectangular intake of the F-22, the crescent-like intake of the F-16, elliptical intake of the MQ-25. In this study, the aerodynamic performance of s-shaped diffusers with various inlet configurations was evaluated using numerical analysis. In addition, the configuration of the middle section of an s-shape duct was changed to the crescent shape, and the effects on its aerodynamic performance were investigated. As a result, there was a slight difference in total pressure recovery according to various inlet configurations with ellipse-shaped middle sections. Also, the total pressure distortion was the lowest in the rectangular inlet shape. When the configuration of the middle section was changed from an ellipse to a crescent shape, the total pressure recovery remained at a high level, except for the ellipse-shaped inlet configuration. In terms of total pressure distortion, the duct with the crescent-shaped middle section showed a significantly more uniform pressure distribution than that with the ellipse-shaped middle section.

Hydrodynamic and Heat Transfer Studies in Riser System for Waste Heat Recovery using Chalcopyrite

  • Popuri, Ashok Kumar;Garimella, Prabhakar
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.252-260
    • /
    • 2018
  • Energy, a critical input, is to be efficiently managed via waste heat recovery and energy reuse for the economic viability of a process industry. In particular, cement manufacture demands a huge quantum of energy, for the necessary reactions. Huge amounts of hot effluent gases are generated. Energy recovery from these waste gases is an area that is of contemporary research interest. Now, about 75% of total heat recovery takes place in the riser of the suspension pre-heater system. This article deals with the hydrodynamic and heat transfer aspects of riser typically used in the cement industry. An experimental apparatus was designed and fabricated with provision for the measurement of gas pressure and solid temperatures at different heights of the riser. The system studied was air - chalcopyrite taken in different particle sizes. Acceleration length ($L_A$) determined at different parametric levels was fitted to an empirical correlation: $L_A/d_t=4.91902(d_p/d_t)^{0.10058}(w_s/w_g)^{-0.11691}(u_g{\mu}_g/d_t^2g{\rho}_g)^{0.28574}({\rho}_p/{\rho}_g)^{0.42484}$. An empirical model was developed for Nusselt number as a function of Reynolds and Prandtl numbers using regression analysis: $Nu=0.40969(Re_p)^{0.99953}(Pr)^{0.03569}$.

Acupuncture Treatment about Medial Meniscus Posterior Horn Rupture : A Case Report

  • Lee, Hey-Jin;Lee, Nam-Heon;Son, Chang-Gue;Cho, Jung-Hyo
    • Journal of Haehwa Medicine
    • /
    • v.29 no.2
    • /
    • pp.30-37
    • /
    • 2020
  • Objectives : In this case, the knee joint inconvenience with deteriorating pain has been relieved by acupuncture treatment for a patient was 51-year-old male with a left medial meniscal posterior horn rupture in 2012. Methods : Twenty-four times of acupuncture treatments were performed for Twelve weeks from July 2016 to improve the disease. SP8(Jigi; 地機), BL63(Geummun; 金門), KI3(Taegye; 太谿), LI4(Hapgok; 合谷) were chosen for treatment by principles of Traditional Korean Medicine. Results : Numeric Rating Scales, which means subjective pain, decreased from 6 points to 3 points out of 10 points in total. Pressure Pain Threshold, which means sensitivity to pressure applied to the affected area, increased from 21N to 47N on the lateral-inferior side and from 19N to 50N on the lateral side. K-WOMAC, which indicates discomfort of knee-related activity, was 56 points out of 96 points in total before treatment and 4 points after treatment, 13 points after two years, and 15 points after four years. However, MRI tests conducted before and after treatment did not identify any significant changes. As a result, we confirmed that a total of 24 acupuncture treatments had resulted in the relief objective and subjective pain and functional recovery, especially in the case of the knee function, maintained until after four years later. There was no significant substrate recovery in meniscal rupture.

Numerical Calculation of the Swirling Flow in a Centrifugal Compressor Volute (원심압축기 벌류트 내부의 스월 유동에 관한 수치해석)

  • Seong, Seon-Mo;Kang, Shin-Hyoung;Cho, Kyung-Seok;Kim, Woo-June
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2603-2608
    • /
    • 2007
  • Flows in the centrifugal compressor volute with circular cross section are numerically investigated. The computational grid for the calculation utilized a multi-block arrangement to form a butterfly grid and flow calculations are performed using commercial CFD software, CFX-TASCflow. The centrifugal compressor of this study has axial diffuser after radial diffuser because of the shape of inlet duct and installation constraints. Due to this feature the swirling flow pattern is different from the other investigations. The flow inside volute is very complex and three dimensional with strong vortex and recirculation through volute tongue. The calculation results show circumferential variations of the swirl and through flow velocity and pressure distribution. The mechanism deciding flow structure is explained by considering the force balance in volute cross section. And static pressure recovery and total pressure loss are estimated from the calculated results and compared with Japikse model.

  • PDF

The Effects of Repetitive Transcranial Magnetic Stimulation on Balance Ability in Acute Stroke Patients

  • Ji, Sang-Goo;Shin, Young-Jun;Kim, Myoung-Kwon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.11 no.3
    • /
    • pp.11-17
    • /
    • 2016
  • PURPOSE: The aim of the present study was to determine whether high frequency repetitive transcranial magnetic stimulation (rTMS) can improve balance ability in acute stage stroke patients. METHODS: The study was conducted on 30 subjects diagnosed with hemiparesis caused by stroke. The experimental group consisted of 15 patients that underwent rTMS for 15 mins and the control group consisted of 15 patients that underwent sham rTMS (for 15 minutes). A 70-mm figure 8 coil and a Magstim Rapid stimulator was used in both groups. Patients in the experimental group received 10 Hz rTMS applied to the hotspot in the lesioned hemisphere in 10-second trains with 50-second intervals between trains, for 15 minutes (total 2,000 pulses). Both groups received conventional physical therapy for 30 minutes a day, 5 days a week, for 4 weeks. Static balance ability analysis was performed using the Gaitview system to measure pressure rate, postural sway, and total pressure, and dynamic balance ability analysis was performed to measure pressure variables using a balance system. RESULTS: A significant difference was observed in post-training gains for pressure rate, total pressure in static balance, and overall stability index in dynamic balance between the experimental group and the control group (p<.05). CONCLUSION: The results of this study indicate that high frequency rTMS may be beneficial for improving static and dynamic balance recovery in acute stroke patients.

Analysis of Heat Exchanging Performance of Heat Recovering Device Attached to Exhaust Gas Duct (열회수장치에 의한 열회수성능 분석)

  • 서원명;윤용철;강종국
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.212-222
    • /
    • 2000
  • This study was performed to investigate the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. The experimental heat recovery system is mainly consisted of LPG combustion chamber and two heat recovery units; unit-A is attached directly to the exhaust gas flue, and unit-B is connected with unit-A. Heat recovery performance was evaluated by estimating total energy amounts by using enthalpy difference between two measurement points together with mass flow rate of gas and/or air passing through each heat recovery unit depending on 5 different flow rates controlled by voltage meter. The results of this experimental study, such as heat exchange behavior of supply air tubes and exhaust air passages crossing the tubes, pressure drop between inlet and outlet, heat recovery performance of exchange unit, etc., will be used as fundamental data for designing optimum heat recovery device to be used for fuel saving purpose by reducing heat loss amounts mostly wasted outside of greenhouse through flue.

  • PDF

A Design Optimization Study of Diffuser Shape in a Supersonic Inlet

  • Lim, S.;Koh, D.H.;Kim, S.D.;Song, D.J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.756-760
    • /
    • 2008
  • Optimum shape of Double-cone supersonic inlet is studied by using numerical methods. Double-cone intake shape is used for the design optimization study. And the total pressure recovery at the exit is used to assess the aerodynamic performance of the inlet.

  • PDF

Evaluation of Total Loss of Feedwater Accident/Recovery Phase and Investigation of the Associated EOP (완전급수상실사고/복구과정의 평가와 관련비상운전절차의 검토)

  • Bang, Young-Seok;Seul, Kwang-Won;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.37-50
    • /
    • 1993
  • To evaluate the sequence of event and the Thermohydraulic behavior during total loss of feedwater accident and recovery procedure, a RELAP5/MOD3 calculation is performed and compared with the LOFT L9-l/L3-3 experiment. Also, the predictability of the code for the major Thermohydraulic phenomena following the accident is assessed. As a result, it is found that a pressure control using the spray until the time the water level reaches the top of the pressurizer, an overpressure protection by pressurizer PORV, a recovery of the secondary heat removal capability by refilling steam generator, and an effective cooldown by the continued natural circulation can be performed without core uncovery. It is also found that the plant-specific evaluation is necessary to confirm the effectiveness of the current symptom-oriented emergency operating procedure, especially in an overpressure protection performance and steam generator recovery performance.

  • PDF