• 제목/요약/키워드: Total potential energy

검색결과 578건 처리시간 0.03초

위치에너지를 축적하는 태양동력 장기체공 무인기의 설계 인자 분석 (Design Parameter Analysis of a Solar-Powered, Potential Energy-Storing, Long Endurance UAV)

  • 양인영;이보화;장병희
    • 한국항공우주학회지
    • /
    • 제39권10호
    • /
    • pp.927-934
    • /
    • 2011
  • 상승 비행에 의해 위치에너지를 축적하는 태양동력 장기체공 무인기에 대하여 설계 인자 분석을 수행하였다. 위치에너지 축적을 위한 비행과 관련된 인자인 최저 및 최고 수평 비행 고도, 활강 및 상승 각도, 설계점 속도 및 고도, 활강 및 상승 시작 시각을 분석 대상으로 하였다. 태양동력 무인기 구성품의 중량 모델을 이용하여 항공기 크기 및 중량을 결정하고 비행 중 생산 및 소모하는 에너지를 계산함으로써 임무 수행에 필요한 배터리 용량을 결정하였다. 각 설계 인자값과 무인기 중량의 관계를 연구하였다. 최고 수평 비행 고도, 활강 및 상승 각도, 설계점 속도 및 고도, 활강 및 상승 시작 시각에는 설계가 가능하도록하는 범위가 존재하며 이 범위 내에서 총 중량을 최소화하는 최적값이 존재하였다.

Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

  • Lee, Kyoung-Rok;Koo, Weoncheol;Kim, Moo-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.513-528
    • /
    • 2013
  • A floating Oscillating Water Column (OWC) wave energy converter, a Backward Bent Duct Buoy (BBDB), was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT) technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL) approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

농촌 그린빌리지 계획을 위한 풍력에너지 자원분석 (Assessment of Wind Power Resources for Rural Green-village Planning)

  • 남상운;김대식
    • 농촌계획
    • /
    • 제14권2호
    • /
    • pp.25-32
    • /
    • 2008
  • Wind energy, which is one of renewable energy, would be useful resources that can be applied to making energy recycling villages without using fossil fuels. This study analyzed energy potential on wind power considering weather condition in three rural villages and compared with energy consumption surveyed. A wind turbine system in the 5kW class can generate 26.1%, 73.9% and 39.5% of the yearly mean consumption of electric power per house in Makhyun, Boojang and Soso respectively. A 750kW wind turbine system can generate 1.7%, 30.3% and 22.1% of the total amount of electric power consumption in three study villages respectively. Wind power energy density was too low in Makhyun and Soso, so it is determined that the application of wind turbine system is almost impossible. Wind energy potential was generally low in Boojang either, but it is evaluated that there is a little possibility of wind power generation relatively. For practical application of renewable energy to rural green-village planning, assessment of energy potential for the local area should be preceded.

Size dependent effect on deflection and buckling analyses of porous nanocomposite plate based on nonlocal strain gradient theory

  • Khazaei, Pegah;Mohammadimehr, Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제76권1호
    • /
    • pp.27-56
    • /
    • 2020
  • In this paper, the deflection and buckling analyses of porous nano-composite piezoelectric plate reinforced by carbon nanotube (CNT) are studied. The equations of equilibrium using energy method are derived from principle of minimum total potential energy. In the research, the non-local strain gradient theory is employed to consider size dependent effect for porous nanocomposite piezoelectric plate. The effects of material length scale parameter, Eringen's nonlocal parameter, porosity coefficient and aspect ratio on the deflection and critical buckling load are investigated. The results indicate that the effect of porosity coefficient on the increase of the deflection and critical buckling load is greatly higher than the other parameters effect, and size effect including nonlocal parameter and the material length scale parameter have a lower effect on the deflection increase with respect to the porosity coefficient, respectively and vice versa for critical buckling load. Porous nanocomposites are used in various engineering fields such as aerospace, medical industries and water refinery.

주거용부문의 DSM 절전잠재량 추정 (Estimating DSM Potentials in Residential Sector)

  • 이창호;조인승
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 D
    • /
    • pp.982-984
    • /
    • 1997
  • DSM activities have grown and matured over several years in Korea. KEPCO is currently offering some DSM programs in industrial, commercial, and residential customers such as rebate program in purchasing efficient measures. The systematic evaluation process of energy savings and peak reduction will be very important for deciding on the optimal investment of DSM activities in utilities in the future. In general, the estimation process of the potential savings of DSM activities include the determination of baseline electricity consumption, the instantaneous technical potential (ITP), the phased technical potential (PTP), the economic potential (EP), and the achievable potential (AP). The purpose of this article is to provide evaluation process of those DSM potential savings based on bottom-up approach and applicate to residential sector in Korea. In case study, ITP, EP are estimated to be respectively 21.5%, 5.7% of total energy consumption, and 4.1%, 2.5% of peak load in 2010.

  • PDF

C2C12 골격근 세포에서 육계, 부자, 갈근 물 추출물의 당대사 및 에너지 조절 효과 (The Effects of Cinnamomum cassia Blume, Aconitum carmichaeli Debx, and Pueraria lobata Benth on Glucose and Energy Metabolism in C2C12 Myotubes)

  • 송미영
    • 한방비만학회지
    • /
    • 제15권2호
    • /
    • pp.131-136
    • /
    • 2015
  • Objectives: The prevalence of obesity and metabolic syndrome is increasing worldwide. Regulation of cellular energy metabolis has the potential to be manipulated therapeutically to serve as a target for obesity and insulin resistance. Skeletal muscle is regarded as a target for regulation of energy metabolism and insulin resistance. In this study, the authors investigated the regulatory effect of (Cinnamomum cassia Blume, CCB), Aconitum carmichaeli Debx (ACD), and Benth (Pueraria lobata Benth, PLB) on energy and glucose metabolism in C2C12 myotubes. Methods: The water extracts of CCB, ACD, and PLB (0.5 mg/ml) were treated in differentiated C2C12 myotubes. The expressions of adenosine monophosphate-activated protein kinase (AMPK) and phosphorylation AMPK were detected with western blotting. Glucose metabolism was investigated with glucose uptake assay and glucose consumption assay, total adenosine triphosphate (ATP) content was also analyzed. Results: CCB, ACD, and PLB activated the phophorylation of AMPK, they also increased the glucose metabolism and total ATP contents in C2C12 myotubes. Conclusions: This study suggests that CCB, ACD, and PLB have the potential to increase energy and glucose metabolism in skeletal muscle.

수중에 잠긴 접지전극주변에서 이온화에 의한 전위저감 및 에너지 방출의 평가 (Evaluation of the potential reduction and energy dispersion caused by ionization phenomena at the submerged ground rod)

  • 안상덕;최종혁;박건훈;양순만;이복희;안창환
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 추계학술대회 논문집
    • /
    • pp.337-340
    • /
    • 2008
  • When high surge voltage invaded into the ground rod contacted with ground water, the ionization phenomena are happened in the water. Although some researchers have surveyed the ionization phenomena in soil, they have just analyzed the variation of the ground resistance. The most important role of the ground rod is to elect human beings from potential rise and to dissipate energy to the earth safely. In this wort we presented the method evaluating the potential reduction and energy dispersion. Also we analyzed theses factors as a function of charging voltages at the water resistivity of $50\;{\Omega}{\cdot}m$ using the Matlab Program. As a result the ground rod potential was reduced to 38 kV by ionization just below breakdown voltage. The energy more than half of the total injected energy was dispersed through the grounding electrode caused due to ionization.

  • PDF

LAYERWISE FORMULATION OF PIEZOELECTRIC LAMINATED COMPOSITES

  • Lee, Jaehong-;Ham, Hee-Jung
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.121-128
    • /
    • 1994
  • A layerwise theory for the dynamic response of a laminated composite plate with integrated piezoelectric actuators and sensors subjected to both mechanical and electrical loadings is proposed. The formulation is derived form the variational principle with consideration for both total potential energy of the structures and the electrical potential energy of the piezoceramics. The governing equations of the present theory account for direct and converse effects of piezoelectrics, and layerwise variation of displacement field through the thickness of a laminate.

  • PDF

Analysis of trusses by total potential optimization method coupled with harmony search

  • Toklu, Yusuf Cengiz;Bekdas, Gebrail;Temur, Rasim
    • Structural Engineering and Mechanics
    • /
    • 제45권2호
    • /
    • pp.183-199
    • /
    • 2013
  • Current methods of analysis of trusses depend on matrix formulations based on equilibrium equations which are in fact derived from energy principles, and compatibility conditions. Recently it has been shown that the minimum energy principle, by itself, in its pure and unmodified form, can well be exploited to analyze structures when coupled with an optimization algorithm, specifically with a meta-heuristic algorithm. The resulting technique that can be called Total Potential Optimization using Meta-heuristic Algorithms (TPO/MA) has already been applied to analyses of linear and nonlinear plane trusses successfully as coupled with simulated annealing and local search algorithms. In this study the technique is applied to both 2-dimensional and 3-dimensional trusses emphasizing robustness, reliability and accuracy. The trials have shown that the technique is robust in two senses: all runs result in answers, and all answers are acceptable as to the reliability and accuracy within the prescribed limits. It has also been shown that Harmony Search presents itself as an appropriate algorithm for the purpose.

Phenolic Composition, Fermentation Profile, Protozoa Population and Methane Production from Sheanut (Butryospermum Parkii) Byproducts In vitro

  • Bhatta, Raghavendra;Mani, Saravanan;Baruah, Luna;Sampath, K.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권10호
    • /
    • pp.1389-1394
    • /
    • 2012
  • Sheanut cake (SNC), expeller (SNE) and solvent extractions (SNSE) samples were evaluated to determine their suitability in animal feeding. The CP content was highest in SNSE (16.2%) followed by SNE (14.7%) and SNC (11.6%). However, metabolizable energy (ME, MJ/kg) was maximum in SNC (8.2) followed by SNE (7.9) and SNSE (7.0). The tannin phenol content was about 7.0 per cent and mostly in the form of hydrolyzable tannin (HT), whereas condensed tannin (CT) was less than one per cent. The in vitro gas production profiles indicated similar y max (maximum potential of gas production) among the 3 by-products. However, the rate of degradation (k) was maximum in SNC followed by SNE and SNSE. The $t^{1/2}$ (time taken for reaching half asymptote) was lowest in SNC (14.4 h) followed by SNE (18.7 h) and SNSE (21.9 h). The increment in the in vitro gas volume (ml/200 mg DM) with PEG (polyethylene glycol)-6000 (as a tannin binder) addition was 12.0 in SNC, 9.6 in SNE and 11.0 in SNSE, respectively. The highest ratio of $CH_4$ (ml) reduction per ml of the total gas, an indicator of the potential of tannin, was recorded in SNE (0.482) followed by SNC (0.301) and SNSE (0.261). There was significant (p<0.05) reduction in entodinia population and total protozoa population. Differential protozoa counts revealed that Entodinia populations increased to a greater extent than Holotricha when PEG was added. This is the first report on the antimethanogenic property of sheanut byproducts. It could be concluded that all the three forms of SN byproducts are medium source of protein and energy for ruminants. There is a great potential for SN by-products to be incorporated in ruminant feeding not only as a source of energy and protein, but also to protect the protein from rumen degradation and suppress enteric methanogenesis.