• Title/Summary/Keyword: Total pollutant management

Search Result 229, Processing Time 0.023 seconds

Integrated Management Strategy of Vehicle Emission Reduction Policies Based on Total Benefits and Co-benefits (총 편익과 공 편익에 기반한 자동차 배출저감 정책의 통합관리 전략)

  • LEE, Kyu Jin;PARK, Kwan Hwee;SHIM, Sang Woo;CHOI, Keechoo
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.4
    • /
    • pp.357-367
    • /
    • 2015
  • This study aims to propose integrated management strategies based on the relationship between co-benefits and total benefits of greenhouse gases and air pollutant emissions for establishing a transport and environmental policy. The results show that the integrated management of the following policies: 'Car Free Day' and 'Early Scrapping of Decrepit Diesel Vehicle', which are used for reducing reduce gasoline and diesel, can together reduce both PM and $CO_2$ emissions and increase total benefits. In addition, the integrated management of 'Car Free Day' with environment policies and 'Congestion Charge' with environment policies simultaneously controls the three factors which influence emissions, including travel volume, travel speed and emissions factor, and was found to be effective in terms of co-benefits. This study reduces both air pollutants, which are harmful to health, and greenhouse gas emissions, which influence climate change, and improves the efficiency of policy through the integrated management of policies.

Estimation and Investigation of the Pollutant Delivery Rate of Sapkyo Reservoir (삽교호의 오염물질 유달률 산정 조사 및 평가연구)

  • Lee, Youngshin;Shin, Sanghee;Lee, Taeho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.29-36
    • /
    • 2014
  • The purpose of this study investigates the delivery characteristics according to the load of pollutants by calculating the delivery rate of targeted areas on pollutants in Sapkyo reservoir. The main rivers of Sapkyo reservoir are Namwoncheon, Dogocheon, Sapkyocheon, Muhancheon and Gokgyocheon. The delivery rate and their characteristics of five major rivers during rainfall season are investigated. As th result, biochemical oxygen demand (BOD), total nitrogen (T-N) and total phosphorous (T-P) of total delivery rate are calculated by 0.40, 0.34 and 0.08, respectively. The delivery rate of T-P compares to other water quality is investigated relatively low. Looked at the overall characteristics of the watershed, the delivery rate of T-N and T-P is little change in the rate of the year, too. The delivery rate of T-N is calculated from 0.2 to 0.3 in the dry season, and from 0.31 to 0.39 in a flood, respectively. The delivery rate of T-P is calculated to more than 0.3 in the dry season, and 0.11 in a flood. It is similar values which the average annual delivery rate of T-P is 0.08. Therefore, the measured delivery rate of Sapkyo reservoir can be applicable such as a delivery rate of similar features of the terrain and land use.

Study on Indoor Air Pollutants of Public Service Centers in Winter, Seoul (서울지역 공공청사 민원실의 겨울철 실내공기질에 관한 연구)

  • Jeon, Jea-Sik;Kim, Mi-Hyung;Lee, Ju-Yeol;Jeon, Myung-Jin;Ryu, In-Cheol;Park, Duck-Shin;Choi, Han-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.5
    • /
    • pp.569-579
    • /
    • 2011
  • This study evaluated the indoor air quality of 26 government offices located in Seoul. The pollutant samples were taken from Jan. 13th to Jan. 29th and Feb. 20th to Feb. 23rd, 2010 in the offices. The target indoor pollutants for this study were $PM_{10}$, formaldehyde, carbon monoxide, carbon dioxide, total bacteria counts, total volatile organic compounds, radon, nitrogen dioxide, ozone, and asbestos which were controlled by the indoor air quality law for the multiple-use facilities management. The results of this study showed that some pollutants of the 38.5% offices exceeded the standards of the air quality guideline. The correlation analysis of the same pollutants between indoor and outdoor represented that $NO_2$ (r=0.629, p<0.05) and $O_3$ (r=0.459, p<0.01) were significant, however, $PM_{10}$ and CO were not. The correlation analysis between different pollutants showed that CO and TVOC (total volatile organic compounds: r=0.724; p<0.01), CO and $NO_2$ (r=0.674; p<0.01), HCHO and humidity (r=0.605; p<0.01), $CO_2$ and TVOC (r=0.534; p<0.01), TBC (total bacteria counts) and Asbestos (r=0.520; p<0.01) were significant. The energy-saving system of government buildings in winter caused under-ventilated and poor air quality. This study suggests that the concentrations of radon and $CO_2$ should be used as an indicator for monitoring indoor air quality and maintaining effective ventilations.

Evaluation on the suspended solids and heavy metals removal mechanisms in bioretention systems

  • Geronimo, Franz Kevin F.;Maniquiz-Redillas, Marla C.;Hong, Jungsun;Kim, Lee-Hyung
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.91-97
    • /
    • 2019
  • Application of bioretention systems in Korea is highly considered due to its minimal space requirements, appropriateness as small landscape areas and good pollutant removal and peak hydraulic flow reduction efficiency. In this study, the efficiency of two lab-scale bioretention types having different physical properties, media configuration and planted with different shrubs and perennials was investigated in reducing heavy metal pollutants in stormwater runoff. Type A bioretention systems were planted with shrubs whereas type B were planted with perennials. Chrysanthemum zawadskii var. latilobum (A-CL) and Aquilegia flabellata var. pumila (A-AP) respectively were planted in each type A bioretention reactors while Rhododendron indicum linnaeus (B-RL) and Spiraea japonica (B-SJ), respectively were planted in each type B bioretention reactors. Results revealed that the four lab-scale bioretention reactors significantly reduced the influent total suspended load by about 89 to 94% (p<0.01). Type B-RL and B-SJ reactors reduced soluble Cr, Cu, Zn, and Pb by 28 to 45% that were 15 to 35% greater than the soluble metal reduction of type A-CL and A-AP reactors, respectively. Among the pollutants, total Cr attained the greatest discharged fraction of 0.52-0.81. Excluding the effect of soil media, total Pb attained the greatest retention fraction in the bioretention systems amounting to 0.15-0.34. Considering the least discharge fraction of heavy metal in the bioretention system, it was observed that the bioretention systems achieved effectual reduction in terms of total Cu, Zn and Pb. These findings were associated with the poor adsorption capacity of the soil used in each bioretention system. The results of this study may be used for estimating the maintenance requirements of bioretention systems.

Application of the Load Duration Curve (LDC) to Evaluate the Achievement Rate of Target Water Quality in the Nakdong River Unit Watersheds (부하지속곡선(LDC ; Load Duration Curve)을 활용한 낙동강수계 오염총량 단위유역 목표수질 평가방법 적용 방안)

  • Jung, Kang-Young;Kim, Hong Tae;Kim, Sang Soo;Kim, Shin;Shin, Dong Seok;Kim, Gyeong Hoon
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.433-445
    • /
    • 2017
  • In recent years, the United States has used the Load Duration Curve (LDC) method to identify water pollution problems, considering the size of the pollutant load in the entire stream flow condition to effectively evaluate Total Maximum Daily Loads (TMDLs). A study on the improvement of the target water quality evaluation method was carried out by comparing evaluations of two consecutive years of water quality and LDC data for 41 unit watersheds (14 main streams and 27 tributaries). As a result, the achievement rate of the target water quality evaluation method, according to current regulations, was 68-93%, and that by the LDC method was 82-93%. Evaluating the target water quality using the LDC method results in a reduction in the administrative burden and the total amount of planning as compared to the current method.

Influence Analysis of Temporal Continuity Change of Flow Data on Load Duration Curve (유량자료의 시간적 연속성 변화가 오염부하지속곡선에 미치는 영향 비교 분석)

  • Kwon, Pil Ju;Han, Jeong Ho;Ryu, Ji chul;Kim, Hong Tae;Lim, Kyoung Jae;Kim, Jong Gun
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.394-402
    • /
    • 2017
  • In korea, TMDL is being implemented to manage nonpoint pollution sources as well as point pollution sources. LDC is being used for the planning of TMDL. In order to analyze the water quality using LDC, it is necessary to prepare FDC using the daily flow data. However, only the daily flow data is measured at the WAMIS branch, and 8days flow data and water quality data are measured at the monitoring Networks. So, in many researches, the water quality is being grasped by deriving the LDC using the 8days flow or the daily flow obtained by various methods. These fluctuations may lead to differences in determining whether the target load is achieved. In this study, each LDC was prepared using the 8day flow and the related daily flow. Then, the effect using different flow data on the achievement of target load was compared according to flow conditions. As a result, the difference ratio in the number of overloads under flow condition was showed 19% in high flows, 42% in moist conditions, 49% in mid-range flows, 41% in dry conditions, and 104% in low flows. In the top ten watershed with the highest difference ratio, the flow became lower the difference ration increases. These differences can cause uncertainty in assessing the achievement of target load using LDC. Therefore, in order to evaluate the water quality accurately and reliably using LDC, accurate daily flow data and water quality data should be secured through the installation of national nonpoint measurement network.

An Estimation of Direct and Indirect GHG-AP Integrated Emissions from Energy Sector in Seoul (2010) (서울시 에너지부문 직·간접 온실가스-대기오염 통합 배출량(2010) 산정)

  • Jung, Jaehyung;Kwon, O-Yul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.2
    • /
    • pp.150-160
    • /
    • 2014
  • Greenhouse gas (GHG) and Air Pollution (AP) emission inventories have been constructed and estimated independently up-to-date in Seoul. It causes difficulty in GHG and AP integrated management due to a difference in emission inventories. In this study, we constructed GHG and AP integrated emission inventories for direct and indirect sources in Seoul during the year 2010 in Energy activities for estimating GHG and AP emissions were derived from IPCC guideline, guidelines for local government greenhouse inventories, air pollutants calculation manual, and Indirect Emission Factors (IEF) reported by Korea Power Exchange. The annual GHG emission was estimated as 50,530,566 $tonCO_{2eq}$, of which 54.8% resulted from direct sources and the remaining 45.2% from indirect sources. Among direct sources, transportation sector emitted the largest GHG, accounting for 47.3% of the total emission from direct sources. As with indirect sources, purchased electricity sector only emitted 98.6% of the total emission from indirect sources. The annual AP emission was estimated as 283,701 tonAP, of which 85.9% was contributed by the combined AP emissions of transportation and fugitive sectors. Estimation of individual air pollutant showed that the largest source were transportation sector for CO, $NO_x$, TSP, $PM_{10}$ and NH3, non-energy sector for $SO_x$, and fugitive sector for VOCs. This study found some limitations in estimating GHG and AP integrated emissions, such as nonconforming emission inventories between GHG and AP, and no indirect AP emission factor of purchased electricity, and so on. Those should be further studied and improved for more effective GHG and AP integrated management.

Water Quality Simulation of Juam Reservoir Depend on Total Pollution Loads Control (총량규제에 따른 주암호의 장래 수질 예측)

  • Jang, Sung-Ryong;An, Ki-Sun;Kwon, Young-Ho;Han, Jae-Ik
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • When the Juam multipurpose dam which is connected with existing large water supply facilities is finished, water environment is changed from stream to lake. The changed quality of water should be examined. In this study, the result of water quality forecasting is analysed and an effective management plan of water quality is presented. Tn this study, the WASPS model that is a dynamic water quality simulation model was selected to forecast the water quality. This model forecasts movement of change of pollutants. For an application of the model, the subject areas were divided into seventeen sub-areas by considering change temperature depending measuring points and on depth of water. Meteorological data collected by the meteorological observatory and data about quality measured by the Korea Water Resources Development Corporation were used for an operation of the model. As a result of quality examination through quality data and estimated pollutant loading, the water quality environment criterion was grade II and the nutritive condition was measured as meso-graphic grade. In this study, an effective management was planned to improve water quality by reducing pollution load. According to the result of examination, when more than 30% of BOD was reduced it was recorded that the environment standard of water quality was improved to the second grade.

The Evaluation of Location Decision Factors of Environmental Foundation Facilities using Environmental Geographic Information System (환경지리정보시스템을 이용한 환경기초시설의 입지 결정요인 평가)

  • Cho, Deok-Ho;Bae, Min-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.45-57
    • /
    • 2008
  • The purpose of this research is to select an appropriate location of water pollution prevention facilities(WPPF) through evaluating location decision factor using environmental geographic information system. To do that, this research reviewed the current location policies of WPPFs and its related researches. And this paper builds water pollutant statistical databases, integrated them with the geographic information system of the administrative areas where water pollutants are generated, and gears it with statistical programs such as correlation and regression analysis in order to figure out the pollution factors which influence on the location decision of WPPF on the real time base. The volume of discharge of industrial wastewater is one of the most important water pollutants on the location decision of WPPF. And the number of industrial facilities also was the most important location decision factor in constructing the WPPFs. In addition, this paper noted that the number of population in each area makes a role to restraint the construction of WPPF. It identified that the disposal facility in Nackdong river upper-middle watersheds was insufficient in treating the livestock pollutants. Therefore, Gyeongbuk should concentrate on the construction of disposal facilities of livestock pollutant in these areas. The results of this research will contribute to decide what kinds of WPPF should be constructed on which watershed in Nackdong River, and to forecast the future water quality of each watershed.

  • PDF

Evaluation of the Volume and Pollutant Reduction in an Infiltration and Filtration Facility with Varying Rainfall Conditions (침투여과시설의 강우계급에 따른 유량 및 비점오염물질 저감 효과 분석)

  • Yu, Gigyung;Choi, Jiyeon;Kang, Hee-Man;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • Urban areas generate large amounts of stormwater and non-point source (NPS) pollutants during rainfall events. These are caused by various land use runoffs, vehicular and human activities and increased impervious cover. The increased runoff and NPS pollutants cause water quality deterioration in the receiving waters and adversely affect the aqua-ecosystem. These environmental impacts could be reduced through the application of low impact development (LID) techniques. In Korea, more than 80% of the total rainfall occurs in summer and most of these were 10 mm or less. Therefore, if the LIDs developed were able to cope with rainfall of 10 mm and below, NPS management could be efficiently conducted. This research was performed to determine the effect of varying amounts of rainfall on the performance capability of an established infiltration and filtration facility (IF facility) that can be applied to Korea's common rainfall ranges. The IF facility area was 1.75% of the catchment area, however the facility treated more than 40% and 60% runoff volume and pollutant reduction respectively for a 10 mm rainfall. Lastly, higher volume and pollutant reduction could be attained when the LID area was at least 2% of the entire catchment.