• 제목/요약/키워드: Total momentum ratio

검색결과 18건 처리시간 0.023초

다단 공기 공급 저 NOx 버너의 선회유동 및 연소특성에 관한 실험적 연구 - 다단공기공급에 의한 연소특성(I) - (A Study on Swirl Flow and Combustion Characteristics of Air Staged Low NOx Burner)

  • 신명철;안재현;김세원
    • 한국연소학회지
    • /
    • 제8권1호
    • /
    • pp.25-35
    • /
    • 2003
  • The objective of this research is to determine generally applicable design principles for the development of internally staged combustion devices. Utilizing a triple annulus combustor, the detailed combustion characteristics are studied. For this triple air staged combustor, the angular momentum weighted by it#s swirl number and air distribution ratio was observed to be the critical criteria of NOx emission. An internal recirculation zone which develops on the centerline of the flame immediately downstream of the burner entraps the fuel into a fuel rich eddy. Then sufficient heat must be transferred from the flame via radiation to the chamber heat transfer surfaces, such that the peak flame temperatures are suppressed when the second air is introduced. It is experimentally found out that the total NOx emission level in this type of burner is below 50ppm(3% Ref. O2) at optimum operating conditions.

  • PDF

Gravitational Radiation Capture between Unequal Mass Black Holes

  • Bae, Yeong-Bok;Lee, Hyung Mok;Kang, Gungwon;Hansen, Jakob
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.37.2-37.2
    • /
    • 2017
  • The gravitational radiation capture between unequal mass black holes without spins is investigated with numerical relativistic simulations, and compared with the Post-Newtonian approximations. The parabolic approximation which assumes that the gravitational radiation from a weakly hyperbolic orbit is the same as that from the parabolic orbit is adopted. Using the radiated energies from the parabolic orbit simulations, we have obtained the impact parameters (b) of the gravitational radiation captures for weakly hyperbolic orbits with respect to the initial energy. The most energetic encounters occur around the boundary between the direct merging and the fly-by orbits, and we find that several percent of the total ADM initial energy can be emitted at the peak. The equal mass BHs emit more energies than unequal mass BHs at the same initial orbital angular momentum in the case of the fly-by orbits. The impact parameters obtained with numerical relativity deviate from those in Post-Newtonian when the encounter is very strong ($b{\leq}100M$), and the deviations are more conspicuous at the high mass ratio.

  • PDF

Outflow properties of 24 DIGITembedded soruces

  • Kang, Seonmi;Lee, Jeong-Eun;Choi, Minho;Evans, Neal J.;Dunham, Michael M.
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.65.2-65.2
    • /
    • 2013
  • We present a study of outflows on 24 embedded young stellar objects (YSOs), which are selected from the sources of the Dust, Ice, and Gas in Time (DIGIT) Herschel key program. Molecular outflow activity, which is believed to have strong dependence on accretion process, is the most powerful in the early embedded phase of star formation and declines as the central protostars evolve to the main sequence stage. In order to study the relation between the CO outflow observed in low J transitions and the properties of protostars, we mapped the CO outows of the selected targets in J = 1-0 and J = 2-1 lines with the 14-m TRAO telescope and the 6-m SRAO telescope, respectively. We estimate CO outflow momentum fluxes (Fco) and compare with bolometric luminosity, Lbol, bolometric temperature, Tbol, and the FIR molecular line luminosities of CO, $H_2O$, OH and [O I], which were detected by the Herschel-PACS observations. We found that $Fco_{1-0}$ is greater than $Fco_{2-1}$, and the mean ratio is about 2. L1455-IRS3 and IRAM04191 have high Fco in spite of low $L_{bol}$. The well known correlation between Fco and $L_{bol}$. is not very evident from all our samples. However, Fco and $L_{bol}$. show a rather strong correlation if L1455-IRS3 and IRAM04191 are excluded. Fco shows little correlation with FIR line luminosities of individual species, while the total FIR line luminosity summed over CO, $H_2O$, OH, and [OI] lines seems to have some correlation. In addition, we report 22 GHz $H_2O$, and 44 GHz CH3OH maser line detections in four sources out of the 24 YSOs.

  • PDF

Investigation of subcooled boiling wall closures at high pressure using a two-phase CFD code

  • Alatrash, Yazan;Cho, Yun Je;Song, Chul-Hwa;Yoon, Han Young
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2276-2296
    • /
    • 2022
  • This study validates the applicability of the CUPID code for simulating subcooled wall boiling under high-pressure conditions against number of DEBORA tests. In addition, a new numerical technique in which the interfacial momentum non-drag forces are calculated at the cell faces rather than the center is presented. This method reduced the numerical instability often triggered by calculating these terms at the cell center. Simulation results showed good agreement against the experimental data except for the bubble sizes in the bulk. Thus, a new model to calculate the Sauter mean diameter is proposed. Next, the effect of the relationship between the bubble departure diameter (Ddep) and the nucleation site density (N) on the performance of the Wall Heat Flux Partitioning (WHFP) model is investigated. Three correlations for Ddep and two for N are grouped into six combinations. Results by the different combinations show that despite the significant difference in the calculated Ddep, most combinations reasonably predict vapor distribution and liquid temperature. Analysis of the axial propagations of wall boiling parameters shows that the N term stabilizes the inconsistences in Ddep values by following a behavior reflective of Ddep to keep the total energy balance. Moreover, ratio of the heat flux components vary widely along the flow depending on the combinations. These results suggest that separate validation of Ddep correlations may be insufficient since its performance relies on the accompanying N correlations.

가변추력 핀틀 분사기의 고압 분무 및 연소특성 (High Pressure Spray and Combustion Characteristics of Throttleable Pintle Injector)

  • 김대환;허수범;김인호;황동현;강철웅;이신우;안규복;윤영빈
    • 한국추진공학회지
    • /
    • 제26권2호
    • /
    • pp.60-71
    • /
    • 2022
  • 최근 발사체 시장의 저비용·재사용 발사체 개발 움직임은 여러 방향으로 세분화되고 있으며, 그중 하나는 가변추력 엔진 개발이다. 또한, 우주 선진국들은 그 청정성 때문에 차세대 우주발사체 추진제로 메탄을 선택하여 연구개발을 진행하고 있다. 본 연구에서는 이에 기체메탄과 액체산소를 추진제로 사용하는 가변추력 핀틀 분사기를 개발했고, 고압 수류시험과 고압 연소시험을 통해 분무 및 연소 특성을 분석했다. 개발된 가변추력 핀틀 분사기는 이중 슬리브 구조를 가졌으며, 반복적인 상압수류, 고압수류 및 연소시험에서 기밀성과 작동성 등에 문제없음을 확인할 수 있었다. 그러나 목표했던 추력 조절 범위는 연소시험에서 달성치 못하는 등 설계상의 문제점이 발견되어 보완이 필요하다.

플라이애시 기반 지오폴리머 모르타르 개발 (Development of Geopolymer Mortar Based on Fly Ash)

  • 고경택;류금성;이장화
    • 한국건설순환자원학회논문집
    • /
    • 제6권4호
    • /
    • pp.119-126
    • /
    • 2012
  • 포틀랜드 시멘트는 전 세계적으로 매년 15억 톤을 생산하고 있으며, 이로 인해 전체의 배출량에 7% 이상의 $CO_2$ 가스 배출로 많은 지구환경을 지속적으로 오염을 시키고 있다. 그리고 화력발전소에서 발생하는 산업부산물인 플라이애시를 시멘트와 일부 대체하여 콘크리트에 재활용하고 있으나, 50% 이상을 해안 및 육상에 매립함으로써 환경적인 문제를 유발하고 있다. 한편 최근 결합재로 시멘트를 사용하지 않은 알칼리 활성 콘크리트에 대한 연구가 활발히 진행되고 있다. 이 알칼리 활성 콘크리트는 시멘트 대신에 실리콘(Si)과 알루미늄(Al)이 풍부한 플라이애시를 사용하여 알칼리 용액으로 활성화시킨 시멘트 ZERO 콘크리트로서 $CO_2$ 가스를 저감하는데 효과적이다. 본 연구에서는 시멘트를 전혀 사용하지 않고 결합재로서 플라이애시를 100% 사용한 지오폴리머 콘크리트를 개발할 목적으로 알칼리 활성화제와 양생조건 등이 모르타르의 압축강도에 미치는 영향에 대해 검토하였다. 그 결과, 9M NaOH과 쇼듐실리케이트를 1:1의 비율로 제조한 알칼리 활성화제를 사용하고, $60^{\circ}C$에서 48시간 동안 양생을 한 다음 기건양생을 실시할 경우 재령 28일에서 압축강도 70 MPa의 지오폴리머 모르타르를 제조할 수 있는 것으로 나타났다.

  • PDF

V700 Cygni: A Dynamically Active W UMa-type Binary Star II

  • Kim, Chun-Hwey;Jeong, Jang-Hae
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권2호
    • /
    • pp.151-161
    • /
    • 2012
  • An intensive analysis of 148 timings of V700 Cyg was performed, including our new timings and 59 timings calculated from the super wide angle search for planets (SWASP) observations, and the dynamical evidence of the W UMa W subtype binary was examined. It was found that the orbital period of the system has varied over approximately $66^y$ in two complicated cyclical components superposed on a weak upward parabolic path. The orbital period secularly increased at a rate of $+8.7({\pm}3.4){\times}10^{-9}$ day/year, which is one order of magnitude lower than those obtained by previous investigators. The small secular period increase is interpreted as a combination of both angular momentum loss (due to magnetic braking) and mass-transfer from the less massive component to the more massive component. One cyclical component had a $20.^y3$ period with an amplitude of $0.^d0037$, and the other had a $62.^y8$ period with an amplitude of $0.^d0258$. The components had an approximate 1:3 relation between their periods and a 1:7 ratio between their amplitudes. Two plausible mechanisms (i.e., the light-time effects [LTEs] caused by the presence of additional bodies and the Applegate model) were considered as possible explanations for the cyclical components. Based on the LTE interpretation, the minimum masses of 0.29 $M_{\odot}$ for the shorter period and 0.50 $M_{\odot}$ for the longer one were calculated. The total light contributions were within 5%, which was in agreement with the 3% third-light obtained from the light curve synthesis performed by Yang & Dai (2009). The Applegate model parameters show that the root mean square luminosity variations (relative to the luminosities of the eclipsing components) are 3 times smaller than the nominal value (${\Delta}L/L_{p,s}{\approx}0.1$), indicating that the variations are hardly detectable from the light curves. Presently, the LTE interpretation (due to the third and fourth stars) is preferred as the possible cause of the two cycling period changes. A possible evolutionary implication for the V700 Cyg system is discussed.

공동이 있는 수직 분사 초음속 연소기 내의 불안정 연소유동 해석 (Numerical Analysis of Unstable Combustion Flows in Normal Injection Supersonic Combustor with a Cavity)

  • Jeong-Yeol Choi;Vigor Yang
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.91-93
    • /
    • 2003
  • A comprehensive numerical study is carried out to investigate for the understanding of the flow evolution and flame development in a supersonic combustor with normal injection of ncumally injecting hydrogen in airsupersonic flows. The formulation treats the complete conservation equations of mass, momentum, energy, and species concentration for a multi-component chemically reacting system. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations and detailed chemistry of H2-Air is considered. It also accommodates a finite-rate chemical kinetics mechanism of hydrogen-air combustion GRI-Mech. 2.11[1], which consists of nine species and twenty-five reaction steps. Turbulence closure is achieved by means of a k-two-equation model (2). The governing equations are spatially discretized using a finite-volume approach, and temporally integrated by means of a second-order accurate implicit scheme (3-5).The supersonic combustor consists of a flat channel of 10 cm height and a fuel-injection slit of 0.1 cm width located at 10 cm downstream of the inlet. A cavity of 5 cm height and 20 cm width is installed at 15 cm downstream of the injection slit. A total of 936160 grids are used for the main-combustor flow passage, and 159161 grids for the cavity. The grids are clustered in the flow direction near the fuel injector and cavity, as well as in the vertical direction near the bottom wall. The no-slip and adiabatic conditions are assumed throughout the entire wall boundary. As a specific example, the inflow Mach number is assumed to be 3, and the temperature and pressure are 600 K and 0.1 MPa, respectively. Gaseous hydrogen at a temperature of 151.5 K is injected normal to the wall from a choked injector.A series of calculations were carried out by varying the fuel injection pressure from 0.5 to 1.5MPa. This amounts to changing the fuel mass flow rate or the overall equivalence ratio for different operating regimes. Figure 1 shows the instantaneous temperature fields in the supersonic combustor at four different conditions. The dark blue region represents the hot burned gases. At the fuel injection pressure of 0.5 MPa, the flame is stably anchored, but the flow field exhibits a high-amplitude oscillation. At the fuel injection pressure of 1.0 MPa, the Mach reflection occurs ahead of the injector. The interaction between the incoming air and the injection flow becomes much more complex, and the fuel/air mixing is strongly enhanced. The Mach reflection oscillates and results in a strong fluctuation in the combustor wall pressure. At the fuel injection pressure of 1.5MPa, the flow inside the combustor becomes nearly choked and the Mach reflection is displaced forward. The leading shock wave moves slowly toward the inlet, and eventually causes the combustor-upstart due to the thermal choking. The cavity appears to play a secondary role in driving the flow unsteadiness, in spite of its influence on the fuel/air mixing and flame evolution. Further investigation is necessary on this issue. The present study features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous works. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is not related to the cavity, but rather to the intrinsic unsteadiness in the flowfield, as also shown experimentally by Ben-Yakar et al. [6], The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The work appears to be the first of its kind in the numerical study of combustion oscillations in a supersonic combustor, although a similar phenomenon was previously reported experimentally. A more comprehensive discussion will be given in the final paper presented at the colloquium.

  • PDF