• Title/Summary/Keyword: Total maximum daily loads (TMDL)

Search Result 54, Processing Time 0.023 seconds

Application of a Decision Support System for Total Maximum Daily Loads (오염총량관리를 위한 의사결정 지원시스템 적용)

  • Lee, Hye-Young;Park, Seok-Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.151-156
    • /
    • 2004
  • A decision support system, Watershed Analysis Risk Management Framework(WARMF), was applied to the Kyungan Stream watershed, a tributary of Lake Paldang, for calculation of total maximum daily loads(TMDL). The WARMF system was developed by Systech Engineering, USA, and has been successfully used in several watersheds, for TMDL studies. The study area was divided into 14 sub-basins, based on digital elevation model(DEM). The integrated watershed and stream model of WARMF was validated by flow and BOD data measured during the year of 1999. There were reasonable agreements between model results and field data, both in water flow and BOD. The validated Kyungan WARMF was extensively utilized to study the quantitative relationship between waste loads and receiving water quality. Based on TMDL guideline at Paldang Lake and Kyungan Stream, the water quality criterion were set to be 3.0mg/L, 3.5mg/L, and 4.0mg/L at the watershed outlet. The allowable waste loads of BOD, both from point and non-point sources, were determined at each water quality criterion. From this study, it was concluded that the WARMF provided several advantages over the conventional application of watershed and stream models for TMDL study, such as time variable simulations, multiple possible soutions, and reduction loads for goal water quality, etc.

Characterization on the Pollution Discharge Load at the Unit Watershed for the Management of Total Maximum Daily Loads - in Guem River Basin (수질오염총량관리 단위유역별 오염물질 배출부하량 특성분석 - 금강수계를 대상으로)

  • Park, Jun Dae;Choi, Ok Youn;Oh, Seung Young
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.786-795
    • /
    • 2012
  • Water quality management should be focused on the pollution concentrated area so that the improvement of water quality can be achieved effectively for the management of Total Maximum Daily Loads (TMDLs). It is necessary to consider discharge characteristics in the TMDL plan. This study analysed discharge characteristics such as pollution generation and discharge load density, and reduction potential by each unit watershed, and categorized the unit watershed into four groups according to its discharge load characteristics. This analysis can be used as helpful information for the prioritization of pollution reduction area and selection of pollution reduction measures in the development of TMDL plans.

A Study on a GIS based Updating Methodology of Landcover Maps for the Enhancement of Utilization in the Total Maximum Daily Loads (TMDL에서의 토지피복지도 활용 제고를 위한 GIS기반 현행화 방법 연구)

  • Kwak, Geun Ho;Kim, Kye Hyun;Lee, Chol Young;Oh, Seong Kwang
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.3
    • /
    • pp.340-350
    • /
    • 2014
  • Recently, TMDL has been implemented to estimate the amount of pollutant loads and to establish proper mitigation strategy to decrease the pollutant loads by the Ministry of Environment. To estimate the amount of pollutant loads with reasonable accuracy, securing landcover map with periodically updating is essential. However, in reality, due to the technical and financial difficulties, the landcover map has not been updated annually. Hence, this study mainly aims to suggest an effective GIS-based updating method in order to promote utilization of landcover map in the estimation of pollutant loads. Bupyeong-gu at the City of Incheon with the total area of $31.98km^2$ was chosen for this study and spatial data including digital topographic maps, ortho aerial photo, and satellite images were collected and utilized. A total of 7,235 feature entities were newly produced through the updating process of five steps and it was revealed that the classification of landcover with the total area of $3.34km^2$ was to be changed. The validity and feasibility of the suggested method were proved with the accuracy of 97.9% from the field verification. Further study needs to be made for devising more automated method to update landcover map to facilitate TMDL for individual local governments.

Assesment of Water Quality Standards using Stochastic Distribution Characteristics between Dynamic Modeling Results and Observed Data (동적수질예측결과의 확률분포특성을 이용한 목표수질 달성가능성 평가)

  • Ha, Sung-Ryong;Lee, Ji-Heon;Seo, Se-Deok;Lee, Seung-Chul;Park, Jung-Ha
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.1
    • /
    • pp.47-56
    • /
    • 2008
  • Total Maximum Daily Load(TMDL) is a core basin management system to assign total emissions of pollutants to unit basin and emission source within a limit of the target water quality and to secure sustainability. considering "Environment and development" together. By current technical guidance of TMDL, the water quality in the riverbed of which the target water quality is noticed, must achieve the target; and the water quality standard for evaluating achievement of the target should be prescribed as non-excessive probability quality of water on the basis of the pertinent water quality documents. Therefore, the study calculated the target water quality by each unit basin which the target water quality must be noticed through the analysis of probability for water quality documents in rivers at the time of establishing a plan, and the study evaluated the achievement possibility of the target water quality by analyzing and comparing the target water quality plan with the standard water quality to evaluate the achievement of the target water quality. As the result, applying the proposed method to Mihocheon River system, it is concluded that selected the target water quality (Each BOD 3.3mg/1 and BOD 3.0mg/1) in Miho A and Musim A is available. Of course, it showed that the target water quality: BOD 2.5mg/1 in Miho A and BOD 3.0mg/1 in Musim A, could be achieved if the small reduction in B unit area was implemented.

Policy Directions of Total Maximum Daily Loads for the Scientific Management of Water Quality (과학적인 수질관리를 위한 오염총량관리제도의 추진 방안)

  • Park, Seok-Soon;Na, Yu-Mee;Na, Eun-Hye
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.2
    • /
    • pp.157-165
    • /
    • 2001
  • This paper presents the policy directions of total maximum daily loads(TMDL), which was recently adopted in Korea, for scientific management of water quality. The basic principles of water quality management are also discussed in this paper, along with the TMDL policy in United States as well as the previous policy in Korea. We discussed several unreasonable points out of the previous approaches, such as regulation of all point sources with equal standards, negligence of an assimilative capacity of the receiving water, and emphasis only on drinking water supply, etc.. For successful applications of the TMDL policy in Korea, the following directions are suggested: 1) the unit drainage basin for each TMDL application should be given, 2) the water body where the water quality standards should be maintained, needs to be guided, 3) the water quality parameters of TMDL should be given, 4) the technical guidances should be given for applications of water quality models, and 5) the seasonal TMDL would be allowed. In order to maximize the benefits of the TMDL policy, the local governments would need to implement the following strategies: 1) the increment of an assimilative capacity of the receiving water, 2) the effective controls of the non-point source pollution, 3) the advanced treatment of the point sources, 4) application of system optimization techniques along with effluent trade, and 5) utilization of watershed management systems.

  • PDF

Improvement and Application of Total Maximum Daily Load Management System of Korea: 1. Calculation of Total Amount of Pollutant Load in the Anyangcheon Watershed (우리나라 오염총량관리제도의 개선 및 적용: 1. 안양천 유역의 오염부하량 산정)

  • Kim, Kyung-Tae;Chung, Eun-Sung;Kim, Sang-Ug;Lee, Kil Seong;Seong, Jin-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.972-978
    • /
    • 2009
  • This study modifies the present total maximum daily load (TMDL) system of Ministry of Environment and applies to the Anyangcheon watershed. Hydrologic Simulation Program-FORTRAN (HSPF) model is used to simulate both runoff and non-point source pollution, simultaneously, instead of QUAL2E. The drought flow (355th daily flow) is proposed for the target water quantity since it is easier to satisfy low flow (275th daily flow) for the target water quality than drought flow. The increase of discharge is more than the increase of pollutant load except for the period under low flow. The measured unit loads for non-point source are used to consider the regional runoff characteristics. The measured water quantity and quality data are used since the ministry of environment supports only water quality. This analysis results show some reasons for the improvement of the present TMDL system of Korea.

Environmental Accounting of the Total Maximum Daily Loads (TMDL) Program in the Nakdong River Basin using the Emergy Analysis (Emergy 분석을 이용한 낙동강유역의 오염총량관리계획에 대한 환경회계)

  • Kim, Jin Lee;Lee, Su-Woong;Kim, Yong-Seok;Lee, Suk-Mo
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.349-356
    • /
    • 2011
  • This study, which evaluated the contribution of the real economic value and system in the Nakdong River Basin, estimated the emergy analysis for environmental accounting of the TMDL program. And an environmental accounting for TMDL is evaluated before and after adopting TMDL program respectively. The value of emergy after adopting the TMDL was 7.90 E+20 sej/yr. Although the real yield of the river after governmental investment was high (before: 9.7118 E+20 sej/yr and after: 9.7224 E+20 sej/yr), the effects of improvement was not great, in terms of an investment cost. The benefit/cost ratio resulted from environmental accounting has decreased from 1.493 to 1.230 due to the cost of managing treatment facilities. The method of improving water quality in the Nakdong River Basin by the TMDL program should be changed into an ecological treatment facilities using resources efficiently from a control of water quality depending on expansion of the wastewater treatment facilities and advanced treatment plant using high cost and non-renewable energies.

Improvement and Application of Total Maximum Daily Load Management System of Korea: 2. Determination of Margin of Safety and Allocation of Pollutant Loads (우리나라 오염총량관리제도의 적용 및 개선: 2. 안전율 산정 및 삭감부하량 할당)

  • Kim, Kyung-Tae;Chung, Eun-Sung;Kim, Sang-Ug;Lee, Kil Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.168-176
    • /
    • 2010
  • This study proposes the improvement of the present Total Maximum Daily Load (TMDL) management system of MOE (Ministry of Environment). The margin of safety (MOS) is calculated by a method using standard error and a method using variability and uncertainty. The allocation of pollutant loads are calculated using three methods, equal load reduction method, equal percent removal method and method using equity standards. This study applied the improved TMDL management system to the Anyangcheon watershed. Since MOS varies from 12% to 44% due to the high variability of measured and simulated data, it must not be ignored in the TMDL. The method using equity standards is the most proper in this application since the others produced unrealistic allocations. Area, runoff, water use quantity, population and budget are considered for equity standards. This study shows that this allocation method can be also applicable for the administrative units as well as the sub-watersheds. Finally, Hydrologic Simulation Program-FORTRAN (HSPF) with the allocated pollutant load was used to confirm whether it satisfy the water quality standard or not. This study will be helpful to improve the MOS and allocation system TMDL in the future.